import gradio as gr from huggingface_hub import list_spaces from cachetools import TTLCache, cached from toolz import groupby, valmap @cached(cache=TTLCache(maxsize=100, ttl=60 * 10)) def get_spaces(): return list(iter(list_spaces(full=True, limit=None))) get_spaces() # to warm up the cache def create_space_to_like_dict(): spaces = get_spaces() return {space.id: space.likes for space in spaces} def create_org_to_like_dict(): spaces = get_spaces() grouped = groupby(lambda x: x.author, spaces) return valmap(lambda x: sum(s.likes for s in x), grouped) def relative_rank(my_dict, target_key, filter_zero=False): if filter_zero: my_dict = {k: v for k, v in my_dict.items() if v != 0} if target_key not in my_dict: raise gr.Error(f"'{target_key}' not found lease check the ID and try again.") sorted_items = sorted(my_dict.items(), key=lambda item: item[1], reverse=True) position = [key for key, _ in sorted_items].index(target_key) num_lower = len(sorted_items) - position - 1 num_higher = position return { "rank": (num_higher + 1) / len(my_dict) * 100, "num_higher": num_higher, "num_lower": num_lower, } def relative_rank_for_space(space_id, filter_zero=False): space_to_like_dict = create_space_to_like_dict() return relative_rank(space_to_like_dict, space_id, filter_zero=filter_zero) def relative_rank_for_org(org_id, filter_zero=False): org_to_like_dict = create_org_to_like_dict() return relative_rank(org_to_like_dict, org_id, filter_zero=filter_zero) def rank_space(space_id): return relative_rank_for_space(space_id) def rank_space_and_org(space_or_org_id, filter_zero): filter_zero = filter_zero == "yes" split = space_or_org_id.split("/") if len(split) == 2: space_rank = relative_rank_for_space(space_or_org_id, filter_zero=filter_zero) return f"""Space {space_or_org_id} is ranked {space_rank['rank']:.2f}% with {space_rank['num_higher']:,} Spaces above and {space_rank['num_lower']:,} Spaces below in the raking.""" if len(split) == 1: org_rank = relative_rank_for_org(space_or_org_id, filter_zero=filter_zero) return f"""Organization or user {space_or_org_id} is ranked {org_rank['rank']:.2f}% with {org_rank['num_higher']:,} orgs/users above and {org_rank['num_lower']:,} orgs/users below in the raking.""" with gr.Blocks() as demo: gr.HTML("

🏆 HuggyRanker 🏆

") gr.HTML( """

Rank a single Space or all of the Spaces created by an organization or user by likes

""" ) gr.HTML( """

🤗 Remember likes aren't everything! 🤗

""" ) gr.Markdown( """## Rank Spaces Provide this app with a Space ID or a Username/Organization name to rank by likes.""" ) with gr.Row(): space_id = gr.Textbox(max_lines=1, label="Space ID") filter_zero = gr.Radio( choices=["no", "yes"], label="Filter out spaces with 0 likes in the ranking?", value="yes", ) run_btn = gr.Button("Rank Space!", label="Rank Space") result = gr.Markdown() run_btn.click(rank_space_and_org, inputs=[space_id, filter_zero], outputs=result) demo.launch()