import torch from torch_geometric.data import Dataset from datasets.dataloader import DataLoader, DataListLoader from datasets.moad import MOAD from datasets.pdb import PDBSidechain from datasets.pdbbind import NoiseTransform, PDBBind from utils.utils import read_strings_from_txt class CombineDatasets(Dataset): def __init__(self, dataset1, dataset2): super(CombineDatasets, self).__init__() self.dataset1 = dataset1 self.dataset2 = dataset2 def len(self): return len(self.dataset1) + len(self.dataset2) def get(self, idx): if idx < len(self.dataset1): return self.dataset1[idx] else: return self.dataset2[idx - len(self.dataset1)] def add_complexes(self, new_complex_list): self.dataset1.add_complexes(new_complex_list) def construct_loader(args, t_to_sigma, device): val_dataset2 = None transform = NoiseTransform(t_to_sigma=t_to_sigma, no_torsion=args.no_torsion, all_atom=args.all_atoms, alpha=args.sampling_alpha, beta=args.sampling_beta, include_miscellaneous_atoms=False if not hasattr(args, 'include_miscellaneous_atoms') else args.include_miscellaneous_atoms, crop_beyond_cutoff=args.crop_beyond) if args.triple_training: assert args.combined_training sequences_to_embeddings = None if args.dataset == 'pdbsidechain' or args.triple_training: if args.pdbsidechain_esm_embeddings_path is not None: print('Loading ESM embeddings') id_to_embeddings = torch.load(args.pdbsidechain_esm_embeddings_path) sequences_list = read_strings_from_txt(args.pdbsidechain_esm_embeddings_sequences_path) sequences_to_embeddings = {} for i, seq in enumerate(sequences_list): if str(i) in id_to_embeddings: sequences_to_embeddings[seq] = id_to_embeddings[str(i)] if args.dataset == 'pdbsidechain' or args.triple_training: common_args = {'root': args.pdbsidechain_dir, 'transform': transform, 'limit_complexes': args.limit_complexes, 'receptor_radius': args.receptor_radius, 'c_alpha_max_neighbors': args.c_alpha_max_neighbors, 'remove_hs': args.remove_hs, 'num_workers': args.num_workers, 'all_atoms': args.all_atoms, 'atom_radius': args.atom_radius, 'atom_max_neighbors': args.atom_max_neighbors, 'knn_only_graph': not args.not_knn_only_graph, 'sequences_to_embeddings': sequences_to_embeddings, 'vandermers_max_dist': args.vandermers_max_dist, 'vandermers_buffer_residue_num': args.vandermers_buffer_residue_num, 'vandermers_min_contacts': args.vandermers_min_contacts, 'remove_second_segment': args.remove_second_segment, 'merge_clusters': args.merge_clusters} train_dataset3 = PDBSidechain(cache_path=args.cache_path, split='train', multiplicity=args.train_multiplicity, **common_args) if args.dataset == 'pdbsidechain': train_dataset = train_dataset3 val_dataset = PDBSidechain(cache_path=args.cache_path, split='val', multiplicity=args.val_multiplicity, **common_args) loader_class = DataListLoader if torch.cuda.is_available() else DataLoader if args.dataset in ['pdbbind', 'moad', 'generalisation', 'distillation']: common_args = {'transform': transform, 'limit_complexes': args.limit_complexes, 'chain_cutoff': args.chain_cutoff, 'receptor_radius': args.receptor_radius, 'c_alpha_max_neighbors': args.c_alpha_max_neighbors, 'remove_hs': args.remove_hs, 'max_lig_size': args.max_lig_size, 'matching': not args.no_torsion, 'popsize': args.matching_popsize, 'maxiter': args.matching_maxiter, 'num_workers': args.num_workers, 'all_atoms': args.all_atoms, 'atom_radius': args.atom_radius, 'atom_max_neighbors': args.atom_max_neighbors, 'knn_only_graph': False if not hasattr(args, 'not_knn_only_graph') else not args.not_knn_only_graph, 'include_miscellaneous_atoms': False if not hasattr(args, 'include_miscellaneous_atoms') else args.include_miscellaneous_atoms, 'matching_tries': args.matching_tries} if args.dataset == 'pdbbind' or args.dataset == 'generalisation' or args.combined_training: train_dataset = PDBBind(cache_path=args.cache_path, split_path=args.split_train, keep_original=True, num_conformers=args.num_conformers, root=args.pdbbind_dir, esm_embeddings_path=args.pdbbind_esm_embeddings_path, protein_file=args.protein_file, **common_args) if args.dataset == 'moad' or args.combined_training: train_dataset2 = MOAD(cache_path=args.cache_path, split='train', keep_original=True, num_conformers=args.num_conformers, max_receptor_size=args.max_receptor_size, remove_promiscuous_targets=args.remove_promiscuous_targets, min_ligand_size=args.min_ligand_size, multiplicity= args.train_multiplicity, unroll_clusters=args.unroll_clusters, esm_embeddings_sequences_path=args.moad_esm_embeddings_sequences_path, root=args.moad_dir, esm_embeddings_path=args.moad_esm_embeddings_path, enforce_timesplit=args.enforce_timesplit, **common_args) if args.combined_training: train_dataset = CombineDatasets(train_dataset2, train_dataset) if args.triple_training: train_dataset = CombineDatasets(train_dataset, train_dataset3) else: train_dataset = train_dataset2 if args.dataset == 'pdbbind' or args.double_val: val_dataset = PDBBind(cache_path=args.cache_path, split_path=args.split_val, keep_original=True, esm_embeddings_path=args.pdbbind_esm_embeddings_path, root=args.pdbbind_dir, protein_file=args.protein_file, require_ligand=True, **common_args) if args.double_val: val_dataset2 = val_dataset if args.dataset == 'moad' or args.dataset == 'generalisation': val_dataset = MOAD(cache_path=args.cache_path, split='val', keep_original=True, multiplicity= args.val_multiplicity, max_receptor_size=args.max_receptor_size, remove_promiscuous_targets=args.remove_promiscuous_targets, min_ligand_size=args.min_ligand_size, esm_embeddings_sequences_path=args.moad_esm_embeddings_sequences_path, unroll_clusters=args.unroll_clusters, root=args.moad_dir, esm_embeddings_path=args.moad_esm_embeddings_path, require_ligand=True, **common_args) loader_class = DataListLoader if torch.cuda.is_available() else DataLoader train_loader = loader_class(dataset=train_dataset, batch_size=args.batch_size, num_workers=args.num_dataloader_workers, shuffle=True, pin_memory=args.pin_memory, drop_last=args.dataloader_drop_last) val_loader = loader_class(dataset=val_dataset, batch_size=args.batch_size, num_workers=args.num_dataloader_workers, shuffle=False, pin_memory=args.pin_memory, drop_last=args.dataloader_drop_last) return train_loader, val_loader, val_dataset2