import gradio as gr import numpy as np from PIL import Image import requests import hopsworks import joblib project = hopsworks.login() fs = project.get_feature_store() mr = project.get_model_registry() model = mr.get_model("titan_modal", version=50) model_dir = model.download() model = joblib.load(model_dir + "/titan_model.pkl") def titan(pclass, sex, age, fare, famliy): input_list = [] input_list.append(pclass) input_list.append(sex) input_list.append(age) input_list.append(fare) input_list.append(famliy) # 'res' is a list of predictions returned as the label. res = model.predict(np.asarray(input_list).reshape(1, -1)) # We add '[0]' to the result of the transformed 'res', because 'res' is a list, and we only want # the first element. survivor_url = "https://raw.githubusercontent.com/Chaouo/Titanic_serverless_ML/main/image/"+ str(res[0]) + ".png" img = Image.open(requests.get(survivor_url, stream=True).raw) return img demo = gr.Interface( fn=titan, title="Titanic Survival Predictive Analytics", description="Experiment with pclass, sex, age, fare, famliy to predict which flower it is.", allow_flagging="never", inputs=[ gr.inputs.Number(default=1.0, label="pclass (1-3)"), gr.inputs.Number(default=1.0, label="sex (0 indecates male and 1 indecates female)"), gr.inputs.Number(default=1.0, label="age"), gr.inputs.Number(default=1.0, label="fare (0-512)"), gr.inputs.Number(default=1.0, label="famliy (numbers)"), ], outputs=gr.Image(type="pil")) demo.launch()