import argparse import ast from collections import defaultdict import datetime import json import math import pickle from pytz import timezone from functools import partial import numpy as np import pandas as pd import plotly.express as px from tqdm import tqdm from transformers import AutoTokenizer from fastchat.model.model_registry import get_model_info from fastchat.serve.monitor.basic_stats import get_log_files from fastchat.serve.monitor.clean_battle_data import clean_battle_data pd.options.display.float_format = "{:.2f}".format def compute_elo(battles, K=4, SCALE=400, BASE=10, INIT_RATING=1000): rating = defaultdict(lambda: INIT_RATING) for rd, model_a, model_b, winner in battles[ ["model_a", "model_b", "winner"] ].itertuples(): ra = rating[model_a] rb = rating[model_b] ea = 1 / (1 + BASE ** ((rb - ra) / SCALE)) eb = 1 / (1 + BASE ** ((ra - rb) / SCALE)) if winner == "model_a": sa = 1 elif winner == "model_b": sa = 0 elif winner == "tie" or winner == "tie (bothbad)": sa = 0.5 else: raise Exception(f"unexpected vote {winner}") rating[model_a] += K * (sa - ea) rating[model_b] += K * (1 - sa - eb) return dict(rating) def get_bootstrap_result(battles, func_compute_elo, num_round=1000): rows = [] for i in tqdm(range(num_round), desc="bootstrap"): tmp_battles = battles.sample(frac=1.0, replace=True) rows.append(func_compute_elo(tmp_battles)) df = pd.DataFrame(rows) return df[df.median().sort_values(ascending=False).index] def compute_elo_mle_with_tie( df, SCALE=400, BASE=10, INIT_RATING=1000, sample_weight=None ): from sklearn.linear_model import LogisticRegression ptbl_a_win = pd.pivot_table( df[df["winner"] == "model_a"], index="model_a", columns="model_b", aggfunc="size", fill_value=0, ) ptbl_tie = pd.pivot_table( df[df["winner"].isin(["tie", "tie (bothbad)"])], index="model_a", columns="model_b", aggfunc="size", fill_value=0, ) ptbl_tie = ptbl_tie + ptbl_tie.T ptbl_b_win = pd.pivot_table( df[df["winner"] == "model_b"], index="model_a", columns="model_b", aggfunc="size", fill_value=0, ) ptbl_win = ptbl_a_win * 2 + ptbl_b_win.T * 2 + ptbl_tie models = pd.Series(np.arange(len(ptbl_win.index)), index=ptbl_win.index) p = len(models) X = np.zeros([p * (p - 1) * 2, p]) Y = np.zeros(p * (p - 1) * 2) cur_row = 0 sample_weights = [] for m_a in ptbl_win.index: for m_b in ptbl_win.columns: if m_a == m_b: continue # if nan skip if math.isnan(ptbl_win.loc[m_a, m_b]) or math.isnan(ptbl_win.loc[m_b, m_a]): continue X[cur_row, models[m_a]] = +math.log(BASE) X[cur_row, models[m_b]] = -math.log(BASE) Y[cur_row] = 1.0 sample_weights.append(ptbl_win.loc[m_a, m_b]) X[cur_row + 1, models[m_a]] = math.log(BASE) X[cur_row + 1, models[m_b]] = -math.log(BASE) Y[cur_row + 1] = 0.0 sample_weights.append(ptbl_win.loc[m_b, m_a]) cur_row += 2 X = X[:cur_row] Y = Y[:cur_row] lr = LogisticRegression(fit_intercept=False, penalty=None) lr.fit(X, Y, sample_weight=sample_weights) elo_scores = SCALE * lr.coef_[0] + INIT_RATING if "mixtral-8x7b-instruct-v0.1" in models.index: elo_scores += 1114 - elo_scores[models["mixtral-8x7b-instruct-v0.1"]] return pd.Series(elo_scores, index=models.index).sort_values(ascending=False) def get_median_elo_from_bootstrap(bootstrap_df): median = dict(bootstrap_df.quantile(0.5)) median = {k: int(v + 0.5) for k, v in median.items()} return median def compute_pairwise_win_fraction(battles, model_order, limit_show_number=None): # Times each model wins as Model A a_win_ptbl = pd.pivot_table( battles[battles["winner"] == "model_a"], index="model_a", columns="model_b", aggfunc="size", fill_value=0, ) # Table counting times each model wins as Model B b_win_ptbl = pd.pivot_table( battles[battles["winner"] == "model_b"], index="model_a", columns="model_b", aggfunc="size", fill_value=0, ) # Table counting number of A-B pairs num_battles_ptbl = pd.pivot_table( battles, index="model_a", columns="model_b", aggfunc="size", fill_value=0 ) # Computing the proportion of wins for each model as A and as B # against all other models row_beats_col_freq = (a_win_ptbl + b_win_ptbl.T) / ( num_battles_ptbl + num_battles_ptbl.T ) if model_order is None: prop_wins = row_beats_col_freq.mean(axis=1).sort_values(ascending=False) model_order = list(prop_wins.keys()) if limit_show_number is not None: model_order = model_order[:limit_show_number] # Arrange ordering according to proprition of wins row_beats_col = row_beats_col_freq.loc[model_order, model_order] return row_beats_col def visualize_leaderboard_table(rating): models = list(rating.keys()) models.sort(key=lambda k: -rating[k]) emoji_dict = { 1: "🥇", 2: "🥈", 3: "🥉", } md = "" md += "| Rank | Model | Elo Rating | Description |\n" md += "| --- | --- | --- | --- |\n" for i, model in enumerate(models): rank = i + 1 minfo = get_model_info(model) emoji = emoji_dict.get(rank, "") md += f"| {rank} | {emoji} [{model}]({minfo.link}) | {rating[model]:.0f} | {minfo.description} |\n" return md def visualize_pairwise_win_fraction(battles, model_order, scale=1): row_beats_col = compute_pairwise_win_fraction(battles, model_order) fig = px.imshow( row_beats_col, color_continuous_scale="RdBu", text_auto=".2f", height=700 * scale, width=700 * scale, ) fig.update_layout( xaxis_title="Model B", yaxis_title="Model A", xaxis_side="top", title_y=0.07, title_x=0.5, ) fig.update_traces( hovertemplate="Model A: %{y}
Model B: %{x}
Fraction of A Wins: %{z}" ) return fig def visualize_battle_count(battles, model_order, scale=1): ptbl = pd.pivot_table( battles, index="model_a", columns="model_b", aggfunc="size", fill_value=0 ) battle_counts = ptbl + ptbl.T fig = px.imshow( battle_counts.loc[model_order, model_order], text_auto=True, height=700 * scale, width=700 * scale, ) fig.update_layout( xaxis_title="Model B", yaxis_title="Model A", xaxis_side="top", title_y=0.07, title_x=0.5, ) fig.update_traces( hovertemplate="Model A: %{y}
Model B: %{x}
Count: %{z}" ) return fig def visualize_average_win_rate(battles, limit_show_number, scale=1): row_beats_col_freq = compute_pairwise_win_fraction( battles, None, limit_show_number=limit_show_number ) fig = px.bar( row_beats_col_freq.mean(axis=1).sort_values(ascending=False), text_auto=".2f", height=500 * scale, width=700 * scale, ) fig.update_layout( yaxis_title="Average Win Rate", xaxis_title="Model", showlegend=False ) return fig def visualize_bootstrap_elo_rating(df, df_final, limit_show_number, scale=1): bars = ( pd.DataFrame( dict( lower=df.quantile(0.025), rating=df_final, upper=df.quantile(0.975), ) ) .reset_index(names="model") .sort_values("rating", ascending=False) ) bars = bars[:limit_show_number] bars["error_y"] = bars["upper"] - bars["rating"] bars["error_y_minus"] = bars["rating"] - bars["lower"] bars["rating_rounded"] = np.round(bars["rating"]) fig = px.scatter( bars, x="model", y="rating", error_y="error_y", error_y_minus="error_y_minus", text="rating_rounded", height=700, width=700 * scale, ) fig.update_layout(xaxis_title="Model", yaxis_title="Rating") return fig def limit_user_votes(battles, daily_vote_per_user): from datetime import datetime print("Before limiting user votes: ", len(battles)) # add date battles["date"] = battles["tstamp"].apply( lambda x: datetime.fromtimestamp(x).strftime("%Y-%m-%d") ) battles_new = pd.DataFrame() for date in battles["date"].unique(): # only take the first daily_vote_per_user votes per judge per day df_today = battles[battles["date"] == date] df_sub = df_today.groupby("judge").head(daily_vote_per_user) # add df_sub to a new dataframe battles_new = pd.concat([battles_new, df_sub]) print("After limiting user votes: ", len(battles_new)) return battles_new def get_model_pair_stats(battles): battles["ordered_pair"] = battles.apply( lambda x: tuple(sorted([x["model_a"], x["model_b"]])), axis=1 ) model_pair_stats = {} for index, row in battles.iterrows(): pair = row["ordered_pair"] if pair not in model_pair_stats: model_pair_stats[pair] = {"win": 0, "loss": 0, "tie": 0} if row["winner"] in ["tie", "tie (bothbad)"]: model_pair_stats[pair]["tie"] += 1 elif row["winner"] == "model_a" and row["model_a"] == min(pair): model_pair_stats[pair]["win"] += 1 elif row["winner"] == "model_b" and row["model_b"] == min(pair): model_pair_stats[pair]["win"] += 1 else: model_pair_stats[pair]["loss"] += 1 return model_pair_stats def outlier_detect( model_pair_stats, battles, max_vote=100, randomized=False, alpha=0.05, c_param=0.5, user_list=None, ): if user_list is None: # only check user who has >= 5 votes to save compute user_vote_cnt = battles["judge"].value_counts() user_list = user_vote_cnt[user_vote_cnt >= 5].index.tolist() print("#User to be checked: ", len(user_list)) bad_user_list = [] for user in user_list: flag = False p_upper = [] p_lower = [] df_2 = battles[battles["judge"] == user] for row in df_2.iterrows(): if len(p_upper) >= max_vote: break model_pair = tuple(sorted([row[1]["model_a"], row[1]["model_b"]])) if row[1]["winner"] in ["tie", "tie (bothbad)"]: vote = 0.5 elif row[1]["winner"] == "model_a" and row[1]["model_a"] == model_pair[0]: vote = 1 elif row[1]["winner"] == "model_b" and row[1]["model_b"] == model_pair[0]: vote = 1 else: vote = 0 stats = model_pair_stats[model_pair] # count all votes # ratings = np.array( # [1] * stats["win"] + [0.5] * stats["tie"] + [0] * stats["loss"] # ) # only count win and loss ratings = np.array([1] * stats["win"] + [0] * stats["loss"]) if randomized: noise = np.random.uniform(-1e-5, 1e-5, len(ratings)) ratings += noise vote += np.random.uniform(-1e-5, 1e-5) p_upper += [(ratings <= vote).mean()] p_lower += [(ratings >= vote).mean()] M_upper = np.prod(1 / (2 * np.array(p_upper))) M_lower = np.prod(1 / (2 * np.array(p_lower))) # M_upper = np.prod((1 - c_param) / (c_param * np.array(p_upper) ** c_param)) # M_lower = np.prod((1 - c_param) / (c_param * np.array(p_lower) ** c_param)) if (M_upper > 1 / alpha) or (M_lower > 1 / alpha): print(f"Identify bad user with {len(p_upper)} votes") flag = True break if flag: bad_user_list.append({"user_id": user, "votes": len(p_upper)}) print("Bad user length: ", len(bad_user_list)) print(bad_user_list) bad_user_id_list = [x["user_id"] for x in bad_user_list] # remove bad users battles = battles[~battles["judge"].isin(bad_user_id_list)] return battles def filter_long_conv(row): threshold = 768 for conversation_type in ["conversation_a", "conversation_b"]: cur_conv = row[conversation_type] num_tokens_all = sum([turn["num_tokens"] for turn in cur_conv]) if num_tokens_all >= threshold: return True return False def report_elo_analysis_results( battles_json, rating_system="bt", num_bootstrap=100, exclude_models=[], langs=[], exclude_tie=False, exclude_unknown_lang=False, daily_vote_per_user=None, run_outlier_detect=False, scale=1, filter_func=lambda x: True, ): battles = pd.DataFrame(battles_json) tqdm.pandas(desc=f"Processing using {filter_func.__name__}") filtered_indices = battles.progress_apply(filter_func, axis=1) battles = battles[filtered_indices] battles = battles.sort_values(ascending=True, by=["tstamp"]) if len(langs) > 0: battles = battles[battles["language"].isin(langs)] if exclude_unknown_lang: battles = battles[~battles["language"].str.contains("unknown")] # remove excluded models battles = battles[ ~( battles["model_a"].isin(exclude_models) | battles["model_b"].isin(exclude_models) ) ] # Only use anonymous votes battles = battles[battles["anony"]].reset_index(drop=True) battles_no_ties = battles[~battles["winner"].str.contains("tie")] if exclude_tie: battles = battles_no_ties if daily_vote_per_user is not None: battles = limit_user_votes(battles, daily_vote_per_user) if run_outlier_detect: model_pair_stats = get_model_pair_stats(battles) battles = outlier_detect(model_pair_stats, battles) print(f"Number of battles: {len(battles)}") # Online update elo_rating_online = compute_elo(battles) if rating_system == "bt": bootstrap_df = get_bootstrap_result( battles, compute_elo_mle_with_tie, num_round=num_bootstrap ) elo_rating_final = compute_elo_mle_with_tie(battles) elif rating_system == "elo": bootstrap_df = get_bootstrap_result( battles, compute_elo, num_round=num_bootstrap ) elo_rating_median = get_median_elo_from_bootstrap(bootstrap_df) elo_rating_final = elo_rating_median model_order = list(elo_rating_final.keys()) model_rating_q025 = bootstrap_df.quantile(0.025) model_rating_q975 = bootstrap_df.quantile(0.975) # compute ranking based on CI ranking = {} for i, model_a in enumerate(model_order): ranking[model_a] = 1 for j, model_b in enumerate(model_order): if i == j: continue if model_rating_q025[model_b] > model_rating_q975[model_a]: ranking[model_a] += 1 # leaderboard_table_df: elo rating, variance, 95% interval, number of battles leaderboard_table_df = pd.DataFrame( { "rating": elo_rating_final, "variance": bootstrap_df.var(), "rating_q975": bootstrap_df.quantile(0.975), "rating_q025": bootstrap_df.quantile(0.025), "num_battles": battles["model_a"] .value_counts() .add(battles["model_b"].value_counts(), fill_value=0), "final_ranking": pd.Series(ranking), } ) model_order.sort(key=lambda k: -elo_rating_final[k]) limit_show_number = int(25 * scale) model_order = model_order[:limit_show_number] # Plots leaderboard_table = visualize_leaderboard_table(elo_rating_final) win_fraction_heatmap = visualize_pairwise_win_fraction( battles_no_ties, model_order, scale=scale ) battle_count_heatmap = visualize_battle_count( battles_no_ties, model_order, scale=scale ) average_win_rate_bar = visualize_average_win_rate( battles_no_ties, limit_show_number, scale=scale ) bootstrap_elo_rating = visualize_bootstrap_elo_rating( bootstrap_df, elo_rating_final, limit_show_number, scale=scale ) last_updated_tstamp = battles["tstamp"].max() last_updated_datetime = datetime.datetime.fromtimestamp( last_updated_tstamp, tz=timezone("US/Pacific") ).strftime("%Y-%m-%d %H:%M:%S %Z") return { "rating_system": rating_system, "elo_rating_online": elo_rating_online, "elo_rating_final": elo_rating_final, "leaderboard_table": leaderboard_table, "win_fraction_heatmap": win_fraction_heatmap, "battle_count_heatmap": battle_count_heatmap, "average_win_rate_bar": average_win_rate_bar, "bootstrap_elo_rating": bootstrap_elo_rating, "last_updated_datetime": last_updated_datetime, "last_updated_tstamp": last_updated_tstamp, "bootstrap_df": bootstrap_df, "leaderboard_table_df": leaderboard_table_df, } def pretty_print_elo_rating(rating): model_order = list(rating.keys()) model_order.sort(key=lambda k: -rating[k]) for i, model in enumerate(model_order): print(f"{i+1:2d}, {model:25s}, {rating[model]:.0f}") if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--clean-battle-file", type=str) parser.add_argument("--max-num-files", type=int) parser.add_argument("--num-bootstrap", type=int, default=100) parser.add_argument( "--rating-system", type=str, choices=["bt", "elo"], default="bt" ) parser.add_argument("--exclude-models", type=str, nargs="+", default=[]) parser.add_argument("--exclude-tie", action="store_true", default=False) parser.add_argument("--exclude-unknown-lang", action="store_true", default=False) parser.add_argument("--exclude-url", action="store_true", default=False) parser.add_argument("--langs", type=str, nargs="+", default=[]) parser.add_argument("--daily-vote-per-user", type=int, default=None) parser.add_argument("--run-outlier-detect", action="store_true", default=False) parser.add_argument("--category", nargs="+", default=["full"]) parser.add_argument("--scale", type=float, default=1) args = parser.parse_args() np.random.seed(42) if args.clean_battle_file: # Read data from a cleaned battle files battles = pd.read_json(args.clean_battle_file) else: # Read data from all log files log_files = get_log_files(args.max_num_files) battles = clean_battle_data(log_files) filter_func_map = { "full": lambda x: True, "long": filter_long_conv, "chinese": lambda x: x["language"] == "Chinese", "english": lambda x: x["language"] == "English", } assert all( [cat in filter_func_map for cat in args.category] ), f"Invalid category: {args.category}" results = {} for cat in args.category: filter_func = filter_func_map[cat] results[cat] = report_elo_analysis_results( battles, rating_system=args.rating_system, num_bootstrap=args.num_bootstrap, exclude_models=args.exclude_models, langs=args.langs, exclude_tie=args.exclude_tie, exclude_unknown_lang=args.exclude_unknown_lang, daily_vote_per_user=args.daily_vote_per_user, run_outlier_detect=args.run_outlier_detect, scale=args.scale, filter_func=filter_func, ) for cat in args.category: print(f"# Results for {cat} conversations") print("# Online Elo") pretty_print_elo_rating(results[cat]["elo_rating_online"]) print("# Median") pretty_print_elo_rating(results[cat]["elo_rating_final"]) print(f"last update : {results[cat]['last_updated_datetime']}") last_updated_tstamp = results[cat]["last_updated_tstamp"] cutoff_date = datetime.datetime.fromtimestamp( last_updated_tstamp, tz=timezone("US/Pacific") ).strftime("%Y%m%d") print(f"last update : {cutoff_date}") with open(f"elo_results_{cutoff_date}.pkl", "wb") as fout: pickle.dump(results, fout)