import gradio as gr from fastai.vision.all import * learn = load_learner("export_5cats.pkl") labels = learn.dls.vocab def predict(img): img = PILImage.create(img) pred,pred_idx,probs = learn.predict(img) return {labels[i]: float(probs[i]) for i in range(len(labels))} title = "Bear classifier" description = "It can only do panda, polar or spectacled, black, grizzly and teddy bears so far... Trained using resnet18 and the fastai library" interpretation= "default" examples = ["panda.jpg","polar.jpg","spectacled.jpg","black.jpg","grizzly.jpg","teddy.jpg"] gr.Interface(fn = predict, inputs = gr.inputs.Image(shape = (512, 512)), outputs = gr.outputs.Label(num_top_classes=5), title = title, description = description, examples = examples, interpretation = interpretation).launch()