import gradio as gr from transformers.utils import logging logging.set_verbosity_error() from sentence_transformers import SentenceTransformer from sentence_transformers import util def compare(input): lines = input.splitlines() embeddings1 = model.encode(lines[0], convert_to_tensor=True) embeddings2 = model.encode(lines[1], convert_to_tensor=True) cosine_scores = util.cos_sim(embeddings1, embeddings2) return "Score: {:.4f} \t\t {} \t\t {}".format(cosine_scores[0][0], lines[0], lines[1]) model = SentenceTransformer("all-MiniLM-L6-v2") demo = gr.Interface(fn=compare, inputs="textarea", outputs="text") demo.launch() gr.close_all()