import numpy as np from tqdm.auto import tqdm tqdm.pandas() from gensim.corpora import Dictionary from gensim.models import TfidfModel from gensim.similarities import SparseMatrixSimilarity from text_utils import preprocess class BM25Gensim: def __init__(self, checkpoint_path, entity_dict, title2idx): self.dictionary = Dictionary.load(checkpoint_path + "/dict") self.tfidf_model = SparseMatrixSimilarity.load(checkpoint_path + "/tfidf") self.bm25_index = TfidfModel.load(checkpoint_path + "/bm25_index") self.title2idx = title2idx self.entity_dict = entity_dict def get_topk_stage1(self, query, topk=100): tokenized_query = query.split() tfidf_query = self.tfidf_model[self.dictionary.doc2bow(tokenized_query)] scores = self.bm25_index[tfidf_query] top_n = np.argsort(scores)[::-1][:topk] return top_n, scores[top_n] def get_topk_stage2(self, x, raw_answer=None, topk=50): x = str(x) query = preprocess(x, max_length=128).lower().split() tfidf_query = self.tfidf_model[self.dictionary.doc2bow(query)] scores = self.bm25_index[tfidf_query] top_n = list(np.argsort(scores)[::-1][:topk]) if raw_answer is not None: raw_answer = raw_answer.strip() if raw_answer in self.entity_dict: title = self.entity_dict[raw_answer].replace("wiki/", "").replace("_", " ") extra_id = self.title2idx.get(title, -1) if extra_id != -1 and extra_id not in top_n: top_n.append(extra_id) scores = scores[top_n] return np.array(top_n), np.array(scores)