import json from text_utils import * import pandas as pd from qa_model import * from bm25_utils import * from pairwise_model import * import nltk nltk.download('punkt') df_wiki_windows = pd.read_csv("./processed/wikipedia_chungta_cleaned.csv") df_wiki = pd.read_csv("./processed/wikipedia_chungta_short.csv") df_wiki.title = df_wiki.title.apply(str) entity_dict = json.load(open("./processed/entities.json")) new_dict = dict() for key, val in entity_dict.items(): val = val.replace("wiki/", "").replace("_", " ") entity_dict[key] = val key = preprocess(key) new_dict[key.lower()] = val entity_dict.update(new_dict) title2idx = dict([(x.strip(), y) for x, y in zip(df_wiki.title, df_wiki.index.values)]) qa_model = QAEnsembleModel_modify("letrunglinh/qa_pnc", entity_dict) pairwise_model_stage1 = PairwiseModel_modify("nguyenvulebinh/vi-mrc-base") bm25_model_stage1 = BM25Gensim("./outputs/bm25_stage1/", entity_dict, title2idx) def get_answer_e2e(question): #Bm25 retrieval for top200 candidates query = preprocess(question).lower() top_n, bm25_scores = bm25_model_stage1.get_topk_stage1(query, topk=200) titles = [preprocess(df_wiki_windows.title.values[i]) for i in top_n] pre_texts = [preprocess(df_wiki_windows.text.values[i]) for i in top_n] #Reranking with pairwise model for top10 question = preprocess(question) ranking_preds = pairwise_model_stage1.stage1_ranking(question, pre_texts) ranking_scores = ranking_preds * bm25_scores #Question answering best_idxs = np.argsort(ranking_scores)[-10:] ranking_scores = np.array(ranking_scores)[best_idxs] texts = np.array(pre_texts)[best_idxs] best_answer = qa_model(question, texts, ranking_scores) if best_answer is None: return pre_texts[0] return best_answer if __name__ == "__main__": # result = get_answer_e2e("OKR là gì?") # print(result) gr.Interface(fn=get_answer_e2e, inputs=["text"], outputs=["textbox"]).launch()