####################################################################################### # # MIT License # # Copyright (c) [2025] [leonelhs@gmail.com] # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # ####################################################################################### # # # Source code is based on or inspired by several projects. # For more details and proper attribution, please refer to the following resources: # # - [stackoverflow] - [https://stackoverflow.com/questions/22656698/perspective-correction-in-opencv-using-python] # - [rembg] [https://huggingface.co/spaces/leonelhs/rembg] # - [rembg] [https://github.com/danielgatis/rembg] # - [Chatgpt] [https://chatgpt.com/] # # The image is first processed by an AI service. # This step provides a cleaner, bounded version of the image, # because OpenCV’s edge detection is not always reliable on raw inputs. # With the improved intermediate image, OpenCV can detect borders more consistently # and the perspective unwrap produces better results. import cv2 import numpy as np import gradio as gr from gradio_client import Client, handle_file client = Client("leonelhs/rembg") def unwrap(image, mask): img = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) gray = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY) _, thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU) contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) contours = sorted(contours, key=cv2.contourArea, reverse=True) if len(contours) > 0: cnt = contours[0] peri = cv2.arcLength(cnt, True) approx = cv2.approxPolyDP(cnt, 0.02 * peri, True) if len(approx) == 4: corners = approx.reshape(4, 2).astype(np.float32) # Order points: top-left, top-right, bottom-right, bottom-left rect = np.zeros((4, 2), dtype="float32") s = corners.sum(axis=1) rect[0] = corners[np.argmin(s)] rect[2] = corners[np.argmax(s)] diff = np.diff(corners, axis=1) rect[1] = corners[np.argmin(diff)] rect[3] = corners[np.argmax(diff)] (tl, tr, br, bl) = rect # Compute width & height widthA = np.linalg.norm(br - bl) widthB = np.linalg.norm(tr - tl) maxWidth = int(max(widthA, widthB)) heightA = np.linalg.norm(tr - br) heightB = np.linalg.norm(tl - bl) maxHeight = int(max(heightA, heightB)) dst = np.array([ [0, 0], [maxWidth - 1, 0], [maxWidth - 1, maxHeight - 1], [0, maxHeight - 1] ], dtype="float32") # Perspective transform M = cv2.getPerspectiveTransform(rect, dst) warped = cv2.warpPerspective(img, M, (maxWidth, maxHeight)) return cv2.cvtColor(warped, cv2.COLOR_BGR2RGB), mask, corners # fallback: return original if no rectangle return image, mask, contours def predict(img): """ Unwrap an image using AI-assisted preprocessing and OpenCV. The algorithm first leverages an AI service to generate a cleaner, well-bounded intermediate image. This helps OpenCV detect borders more reliably before performing the perspective unwrap. Parameters: img (string): File path to the input image to be unwrapped. Returns: path (string): File path to the generated, unwrapped image. """ # Step 1: Use an AI service to preprocess the image. # - OpenCV can detect edges, but results are inconsistent depending on noise/lighting. # - The AI model generates a cleaner, well-bounded intermediate image. crop, mask = client.predict(image=handle_file(img), session="U2NET", smoot=True, api_name="/predict") # Step 2: Apply OpenCV on this intermediate image for more accurate border detection # before performing the perspective unwrap. crop = cv2.imread(crop) mask = cv2.imread(mask) return unwrap(crop, mask) with gr.Blocks() as app: gr.Markdown("## 🖼️ Rectangle Detection & Perspective Unwrap") with gr.Row(): with gr.Column(scale=1): inp = gr.Image(type="filepath", label="Upload Image") btn_unwrap = gr.Button("📐 Perspective Unwrap") with gr.Column(scale=2): with gr.Row(): with gr.Column(scale=1): out_unwrap = gr.Image(type="numpy", label="Unwrapped Rectangle") with gr.Accordion("See intermediates", open=False): out_mask = gr.Image(type="numpy", label="Detected Corners") out_corners = gr.JSON(label="Corners (x,y)") btn_unwrap.click(predict, inputs=inp, outputs=[out_unwrap, out_mask, out_corners]) app.launch(share=False, debug=True, show_error=True, mcp_server=True) app.queue()