import gradio as gr from huggingface_hub import InferenceClient """ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference """ client = InferenceClient("shisa-ai/shisa-llama3-8b-v1") def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content response += token yield response """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch() ''' # https://www.gradio.app/guides/using-hugging-face-integrations import gradio as gr import logging import html from pprint import pprint import time import torch from threading import Thread from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, TextIteratorStreamer # Model model_name = "augmxnt/shisa-7b-v1" # UI Settings title = "Shisa 7B" description = "Test out Shisa 7B in either English or Japanese. If you aren't getting the right language outputs, you can try changing the system prompt to the appropriate language.\n\nNote: we are running this model quantized at `load_in_4bit` to fit in 16GB of VRAM." placeholder = "Type Here / ここに入力してください" examples = [ ["What are the best slices of pizza in New York City?"], ["東京でおすすめのラーメン屋ってどこ?"], ['How do I program a simple "hello world" in Python?'], ["Pythonでシンプルな「ハローワールド」をプログラムするにはどうすればいいですか?"], ] # LLM Settings # Initial system_prompt = 'You are a helpful, bilingual assistant. Reply in same language as the user.' default_prompt = system_prompt tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype=torch.bfloat16, device_map="auto", # load_in_8bit=True, load_in_4bit=True, use_flash_attention_2=True, ) def chat(message, history, system_prompt): if not system_prompt: system_prompt = default_prompt print('---') print('Prompt:', system_prompt) pprint(history) print(message) # Let's just rebuild every time it's easier chat_history = [{"role": "system", "content": system_prompt}] for h in history: chat_history.append({"role": "user", "content": h[0]}) chat_history.append({"role": "assistant", "content": h[1]}) chat_history.append({"role": "user", "content": message}) input_ids = tokenizer.apply_chat_template(chat_history, add_generation_prompt=True, return_tensors="pt") # for multi-gpu, find the device of the first parameter of the model first_param_device = next(model.parameters()).device input_ids = input_ids.to(first_param_device) generate_kwargs = dict( inputs=input_ids, max_new_tokens=200, do_sample=True, temperature=0.7, repetition_penalty=1.15, top_p=0.95, eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.eos_token_id, ) output_ids = model.generate(**generate_kwargs) new_tokens = output_ids[0, input_ids.size(1):] response = tokenizer.decode(new_tokens, skip_special_tokens=True) return response chat_interface = gr.ChatInterface( chat, chatbot=gr.Chatbot(height=400), textbox=gr.Textbox(placeholder=placeholder, container=False, scale=7), title=title, description=description, theme="soft", examples=examples, cache_examples=False, undo_btn="Delete Previous", clear_btn="Clear", additional_inputs=[ gr.Textbox(system_prompt, label="System Prompt (Change the language of the prompt for better replies)"), ], ) # https://huggingface.co/spaces/ysharma/Explore_llamav2_with_TGI/blob/main/app.py#L219 - we use this with construction b/c Gradio barfs on autoreload otherwise with gr.Blocks() as demo: chat_interface.render() gr.Markdown("You can try asking this question in Japanese or English. We limit output to 200 tokens.") demo.queue().launch() '''