import gradio as gr import numpy as np import torch from datasets import load_dataset import librosa from transformers import pipeline from transformers import BarkModel, BarkProcessor from transformers import Speech2TextProcessor, Speech2TextForConditionalGeneration device = "cuda:0" if torch.cuda.is_available() else "cpu" asr_model = Speech2TextForConditionalGeneration.from_pretrained("facebook/s2t-medium-mustc-multilingual-st") asr_processor = Speech2TextProcessor.from_pretrained("facebook/s2t-medium-mustc-multilingual-st") asr_model.to(device) bark_model = BarkModel.from_pretrained("suno/bark-small") bark_processor = BarkProcessor.from_pretrained("suno/bark-small") bark_model.to(device) def translate(audio): sr, y = audio y = y.astype(np.float32) y /= np.max(np.abs(y)) if sr != 16000: y = librosa.resample(y, orig_sr=sr, target_sr=16000) inputs = asr_processor(y, sampling_rate=16000, return_tensors="pt") generated_ids = asr_model.generate(inputs["input_features"],attention_mask=inputs["attention_mask"], forced_bos_token_id=asr_processor.tokenizer.lang_code_to_id['it'],) translation = asr_processor.batch_decode(generated_ids, skip_special_tokens=True) # _, parsedTranslation = translation[0].split(")", 1) # translation[0] = parsedTranslation return translation def synthesise(text): inputs = bark_processor(text=text, voice_preset="v2/it_speaker_4",return_tensors="pt") speech = bark_model.generate(**inputs, do_sample=True) speech = speech.cpu().numpy().squeeze() return speech def speech_to_speech_translation(audio): translated_text = translate(audio) synthesised_speech = synthesise(translated_text) synthesised_speech = (synthesised_speech * 32767).astype(np.int16) return 16000, synthesised_speech title = "Cascaded STST" description = """i Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in Italian. Demo uses Meta's [Speech2Text](https://huggingface.co/facebook/s2t-medium-mustc-multilingual-st) model for speech translation, and Suno's [Bark](https://huggingface.co/suno/bark) model for text-to-speech: """ demo = gr.Blocks() mic_translate = gr.Interface( fn=speech_to_speech_translation, inputs=gr.Audio(sources="microphone"), outputs=gr.Audio(label="Generated Speech", type="numpy"), title=title, description=description, ) file_translate = gr.Interface( fn=speech_to_speech_translation, inputs=gr.Audio(sources="upload"), outputs=gr.Audio(label="Generated Speech", type="numpy"), examples=[["./example_en.mp3"]], title=title, description=description, ) with demo: gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"]) demo.launch()