# A reimplemented version in public environments by Xiao Fu and Mu Hu import torch import numpy as np import torch.nn as nn def init_image_coor(height, width): x_row = np.arange(0, width) x = np.tile(x_row, (height, 1)) x = x[np.newaxis, :, :] x = x.astype(np.float32) x = torch.from_numpy(x.copy()).cuda() u_u0 = x - width/2.0 y_col = np.arange(0, height) # y_col = np.arange(0, height) y = np.tile(y_col, (width, 1)).T y = y[np.newaxis, :, :] y = y.astype(np.float32) y = torch.from_numpy(y.copy()).cuda() v_v0 = y - height/2.0 return u_u0, v_v0 def depth_to_xyz(depth, focal_length): b, c, h, w = depth.shape u_u0, v_v0 = init_image_coor(h, w) x = u_u0 * depth / focal_length y = v_v0 * depth / focal_length z = depth pw = torch.cat([x, y, z], 1).permute(0, 2, 3, 1) # [b, h, w, c] return pw def get_surface_normal(xyz, patch_size=3): # xyz: [1, h, w, 3] x, y, z = torch.unbind(xyz, dim=3) x = torch.unsqueeze(x, 0) y = torch.unsqueeze(y, 0) z = torch.unsqueeze(z, 0) xx = x * x yy = y * y zz = z * z xy = x * y xz = x * z yz = y * z patch_weight = torch.ones((1, 1, patch_size, patch_size), requires_grad=False).cuda() xx_patch = nn.functional.conv2d(xx, weight=patch_weight, padding=int(patch_size / 2)) yy_patch = nn.functional.conv2d(yy, weight=patch_weight, padding=int(patch_size / 2)) zz_patch = nn.functional.conv2d(zz, weight=patch_weight, padding=int(patch_size / 2)) xy_patch = nn.functional.conv2d(xy, weight=patch_weight, padding=int(patch_size / 2)) xz_patch = nn.functional.conv2d(xz, weight=patch_weight, padding=int(patch_size / 2)) yz_patch = nn.functional.conv2d(yz, weight=patch_weight, padding=int(patch_size / 2)) ATA = torch.stack([xx_patch, xy_patch, xz_patch, xy_patch, yy_patch, yz_patch, xz_patch, yz_patch, zz_patch], dim=4) ATA = torch.squeeze(ATA) ATA = torch.reshape(ATA, (ATA.size(0), ATA.size(1), 3, 3)) eps_identity = 1e-6 * torch.eye(3, device=ATA.device, dtype=ATA.dtype)[None, None, :, :].repeat([ATA.size(0), ATA.size(1), 1, 1]) ATA = ATA + eps_identity x_patch = nn.functional.conv2d(x, weight=patch_weight, padding=int(patch_size / 2)) y_patch = nn.functional.conv2d(y, weight=patch_weight, padding=int(patch_size / 2)) z_patch = nn.functional.conv2d(z, weight=patch_weight, padding=int(patch_size / 2)) AT1 = torch.stack([x_patch, y_patch, z_patch], dim=4) AT1 = torch.squeeze(AT1) AT1 = torch.unsqueeze(AT1, 3) patch_num = 4 patch_x = int(AT1.size(1) / patch_num) patch_y = int(AT1.size(0) / patch_num) n_img = torch.randn(AT1.shape).cuda() overlap = patch_size // 2 + 1 for x in range(int(patch_num)): for y in range(int(patch_num)): left_flg = 0 if x == 0 else 1 right_flg = 0 if x == patch_num -1 else 1 top_flg = 0 if y == 0 else 1 btm_flg = 0 if y == patch_num - 1 else 1 at1 = AT1[y * patch_y - top_flg * overlap:(y + 1) * patch_y + btm_flg * overlap, x * patch_x - left_flg * overlap:(x + 1) * patch_x + right_flg * overlap] ata = ATA[y * patch_y - top_flg * overlap:(y + 1) * patch_y + btm_flg * overlap, x * patch_x - left_flg * overlap:(x + 1) * patch_x + right_flg * overlap] n_img_tmp, _ = torch.solve(at1, ata) n_img_tmp_select = n_img_tmp[top_flg * overlap:patch_y + top_flg * overlap, left_flg * overlap:patch_x + left_flg * overlap, :, :] n_img[y * patch_y:y * patch_y + patch_y, x * patch_x:x * patch_x + patch_x, :, :] = n_img_tmp_select n_img_L2 = torch.sqrt(torch.sum(n_img ** 2, dim=2, keepdim=True)) n_img_norm = n_img / n_img_L2 # re-orient normals consistently orient_mask = torch.sum(torch.squeeze(n_img_norm) * torch.squeeze(xyz), dim=2) > 0 n_img_norm[orient_mask] *= -1 return n_img_norm def get_surface_normalv2(xyz, patch_size=3): """ xyz: xyz coordinates patch: [p1, p2, p3, p4, p5, p6, p7, p8, p9] surface_normal = [(p9-p1) x (p3-p7)] + [(p6-p4) - (p8-p2)] return: normal [h, w, 3, b] """ b, h, w, c = xyz.shape half_patch = patch_size // 2 xyz_pad = torch.zeros((b, h + patch_size - 1, w + patch_size - 1, c), dtype=xyz.dtype, device=xyz.device) xyz_pad[:, half_patch:-half_patch, half_patch:-half_patch, :] = xyz # xyz_left_top = xyz_pad[:, :h, :w, :] # p1 # xyz_right_bottom = xyz_pad[:, -h:, -w:, :]# p9 # xyz_left_bottom = xyz_pad[:, -h:, :w, :] # p7 # xyz_right_top = xyz_pad[:, :h, -w:, :] # p3 # xyz_cross1 = xyz_left_top - xyz_right_bottom # p1p9 # xyz_cross2 = xyz_left_bottom - xyz_right_top # p7p3 xyz_left = xyz_pad[:, half_patch:half_patch + h, :w, :] # p4 xyz_right = xyz_pad[:, half_patch:half_patch + h, -w:, :] # p6 xyz_top = xyz_pad[:, :h, half_patch:half_patch + w, :] # p2 xyz_bottom = xyz_pad[:, -h:, half_patch:half_patch + w, :] # p8 xyz_horizon = xyz_left - xyz_right # p4p6 xyz_vertical = xyz_top - xyz_bottom # p2p8 xyz_left_in = xyz_pad[:, half_patch:half_patch + h, 1:w+1, :] # p4 xyz_right_in = xyz_pad[:, half_patch:half_patch + h, patch_size-1:patch_size-1+w, :] # p6 xyz_top_in = xyz_pad[:, 1:h+1, half_patch:half_patch + w, :] # p2 xyz_bottom_in = xyz_pad[:, patch_size-1:patch_size-1+h, half_patch:half_patch + w, :] # p8 xyz_horizon_in = xyz_left_in - xyz_right_in # p4p6 xyz_vertical_in = xyz_top_in - xyz_bottom_in # p2p8 n_img_1 = torch.cross(xyz_horizon_in, xyz_vertical_in, dim=3) n_img_2 = torch.cross(xyz_horizon, xyz_vertical, dim=3) # re-orient normals consistently orient_mask = torch.sum(n_img_1 * xyz, dim=3) > 0 n_img_1[orient_mask] *= -1 orient_mask = torch.sum(n_img_2 * xyz, dim=3) > 0 n_img_2[orient_mask] *= -1 n_img1_L2 = torch.sqrt(torch.sum(n_img_1 ** 2, dim=3, keepdim=True)) n_img1_norm = n_img_1 / (n_img1_L2 + 1e-8) n_img2_L2 = torch.sqrt(torch.sum(n_img_2 ** 2, dim=3, keepdim=True)) n_img2_norm = n_img_2 / (n_img2_L2 + 1e-8) # average 2 norms n_img_aver = n_img1_norm + n_img2_norm n_img_aver_L2 = torch.sqrt(torch.sum(n_img_aver ** 2, dim=3, keepdim=True)) n_img_aver_norm = n_img_aver / (n_img_aver_L2 + 1e-8) # re-orient normals consistently orient_mask = torch.sum(n_img_aver_norm * xyz, dim=3) > 0 n_img_aver_norm[orient_mask] *= -1 n_img_aver_norm_out = n_img_aver_norm.permute((1, 2, 3, 0)) # [h, w, c, b] # a = torch.sum(n_img1_norm_out*n_img2_norm_out, dim=2).cpu().numpy().squeeze() # plt.imshow(np.abs(a), cmap='rainbow') # plt.show() return n_img_aver_norm_out#n_img1_norm.permute((1, 2, 3, 0)) def surface_normal_from_depth(depth, focal_length, valid_mask=None): # para depth: depth map, [b, c, h, w] b, c, h, w = depth.shape focal_length = focal_length[:, None, None, None] depth_filter = nn.functional.avg_pool2d(depth, kernel_size=3, stride=1, padding=1) depth_filter = nn.functional.avg_pool2d(depth_filter, kernel_size=3, stride=1, padding=1) xyz = depth_to_xyz(depth_filter, focal_length) sn_batch = [] for i in range(b): xyz_i = xyz[i, :][None, :, :, :] normal = get_surface_normalv2(xyz_i) sn_batch.append(normal) sn_batch = torch.cat(sn_batch, dim=3).permute((3, 2, 0, 1)) # [b, c, h, w] mask_invalid = (~valid_mask).repeat(1, 3, 1, 1) sn_batch[mask_invalid] = 0.0 return sn_batch def vis_normal(normal): """ Visualize surface normal. Transfer surface normal value from [-1, 1] to [0, 255] @para normal: surface normal, [h, w, 3], numpy.array """ n_img_L2 = np.sqrt(np.sum(normal ** 2, axis=2, keepdims=True)) n_img_norm = normal / (n_img_L2 + 1e-8) normal_vis = n_img_norm * 127 normal_vis += 128 normal_vis = normal_vis.astype(np.uint8) return normal_vis def vis_normal2(normals): ''' Montage of normal maps. Vectors are unit length and backfaces thresholded. ''' x = normals[:, :, 0] # horizontal; pos right y = normals[:, :, 1] # depth; pos far z = normals[:, :, 2] # vertical; pos up backfacing = (z > 0) norm = np.sqrt(np.sum(normals**2, axis=2)) zero = (norm < 1e-5) x += 1.0; x *= 0.5 y += 1.0; y *= 0.5 z = np.abs(z) x[zero] = 0.0 y[zero] = 0.0 z[zero] = 0.0 normals[:, :, 0] = x # horizontal; pos right normals[:, :, 1] = y # depth; pos far normals[:, :, 2] = z # vertical; pos up return normals if __name__ == '__main__': import cv2, os