#!/usr/bin/env python3 # Copyright (C) 2024 Louis Chua Bean Chong # # This file is part of OpenLLM. # # OpenLLM is dual-licensed: # 1. For open source use: GNU General Public License v3.0 # 2. For commercial use: Commercial License (contact for details) # # See LICENSE and docs/LICENSES.md for full license information. """ Training Data Loader for Language Model Training This module provides efficient data loading and batching for training GPT-style language models. It handles text preprocessing, tokenization, and creates batches suitable for autoregressive language modeling. FEATURES: - Memory-efficient text loading with sliding window - Automatic tokenization using trained SentencePiece model - Configurable sequence length and batch size - CPU-optimized data loading for limited hardware - Support for training data validation and statistics MEMORY OPTIMIZATION: - Streaming data loading (doesn't load entire dataset to memory) - Configurable chunk sizes for large files - Efficient tensor creation and batching - Garbage collection hints for memory management Usage: from data_loader import TextDataLoader loader = TextDataLoader( data_file="data/clean/training_data.txt", tokenizer_path="data/tokenizer/tokenizer.model", seq_len=512, batch_size=4 ) for batch in loader: input_ids, targets = batch # input_ids: (batch_size, seq_len) # targets: (batch_size, seq_len) - shifted by 1 for next token prediction Author: Louis Chua Bean Chong License: GPLv3 """ import os import gc import random import torch import time from typing import Iterator, Tuple, List, Optional from pathlib import Path try: import sentencepiece as spm except ImportError: print("ERROR: SentencePiece not installed. Run: pip install sentencepiece") exit(1) class TextDataLoader: """ Efficient data loader for autoregressive language model training. This class handles loading text data, tokenizing it using SentencePiece, and creating batches suitable for next-token prediction training. """ def __init__( self, data_file: str, tokenizer_path: str, seq_len: int = 512, batch_size: int = 4, chunk_size: int = 1000000, # Lines to read at once shuffle: bool = True, seed: int = 42 ): """ Initialize the data loader. Args: data_file: Path to training text file (one passage per line) tokenizer_path: Path to trained SentencePiece model seq_len: Maximum sequence length for training batch_size: Batch size for training chunk_size: Number of lines to read in memory at once shuffle: Whether to shuffle training examples seed: Random seed for reproducibility """ self.data_file = data_file self.tokenizer_path = tokenizer_path self.seq_len = seq_len self.batch_size = batch_size self.chunk_size = chunk_size self.shuffle = shuffle self.seed = seed # Validate inputs self._validate_inputs() # Load tokenizer self.tokenizer = self._load_tokenizer() # Get data statistics self.total_lines = self._count_lines() self.current_line = 0 # Set random seed for reproducibility random.seed(seed) print(f"๐Ÿ“Š TextDataLoader initialized") print(f" Data file: {data_file}") print(f" Total passages: {self.total_lines:,}") print(f" Sequence length: {seq_len}") print(f" Batch size: {batch_size}") print(f" Vocabulary size: {self.tokenizer.vocab_size():,}") def _validate_inputs(self) -> None: """Validate input parameters and file paths.""" if not os.path.exists(self.data_file): raise FileNotFoundError(f"Training data file not found: {self.data_file}") if not os.path.exists(self.tokenizer_path): raise FileNotFoundError(f"Tokenizer model not found: {self.tokenizer_path}") if self.seq_len <= 0: raise ValueError(f"Sequence length must be positive, got {self.seq_len}") if self.batch_size <= 0: raise ValueError(f"Batch size must be positive, got {self.batch_size}") if self.chunk_size <= 0: raise ValueError(f"Chunk size must be positive, got {self.chunk_size}") def _load_tokenizer(self) -> spm.SentencePieceProcessor: """Load the trained SentencePiece tokenizer.""" try: tokenizer = spm.SentencePieceProcessor() tokenizer.load(self.tokenizer_path) return tokenizer except Exception as e: raise RuntimeError(f"Failed to load tokenizer: {e}") def _count_lines(self) -> int: """Count total number of lines in the data file.""" print("๐Ÿ“ Counting training passages...") start_time = time.time() line_count = 0 with open(self.data_file, 'r', encoding='utf-8') as f: for line in f: if line.strip(): # Only count non-empty lines line_count += 1 count_time = time.time() - start_time print(f"โœ“ Found {line_count:,} passages in {count_time:.1f}s") return line_count def _read_chunk(self, start_line: int = 0) -> List[str]: """ Read a chunk of lines from the data file. Args: start_line: Line number to start reading from Returns: List of text passages """ chunk = [] current_line = 0 lines_read = 0 with open(self.data_file, 'r', encoding='utf-8') as f: for line in f: if current_line < start_line: current_line += 1 continue text = line.strip() if text: # Only include non-empty lines chunk.append(text) lines_read += 1 if lines_read >= self.chunk_size: break current_line += 1 return chunk def _tokenize_texts(self, texts: List[str]) -> List[List[int]]: """ Tokenize a list of text passages using SentencePiece tokenizer. This method converts raw text into token ID sequences suitable for language model training. It handles special tokens (BOS/EOS) and length constraints for efficient training. Text processing pipeline: 1. Add BOS (Beginning of Sequence) token to mark sequence start 2. Tokenize text using trained SentencePiece model (subword tokenization) 3. Truncate sequences that exceed maximum length 4. Add EOS (End of Sequence) token to mark sequence end Special token handling: - BOS token helps model learn to generate text from scratch - EOS token signals natural sequence endings - These tokens are crucial for proper autoregressive generation Args: texts: List of text passages (typically Wikipedia passages from SQUAD) Each passage should be a complete, coherent text segment Returns: List of token ID sequences, where each sequence is a list of integers representing subword tokens from the SentencePiece vocabulary """ tokenized = [] for text in texts: try: # Add BOS (Beginning of Sequence) token at the start # BOS token ID=2 by default in SentencePiece, signals sequence start # This helps the model learn proper sequence initialization during generation tokens = [self.tokenizer.bos_id()] + self.tokenizer.encode(text) # Truncate sequences that exceed maximum context length # Reserve one position for EOS token by using (seq_len - 1) # This ensures we never exceed the model's context window during training if len(tokens) > self.seq_len - 1: tokens = tokens[:self.seq_len - 1] # NOTE: Truncation may cut off text mid-sentence, but this is acceptable # for language modeling where the model learns from partial contexts # Add EOS (End of Sequence) token at the end # EOS token ID=1 by default in SentencePiece, signals sequence completion # This teaches the model when to stop generating text naturally tokens.append(self.tokenizer.eos_id()) # Validate tokenization result if len(tokens) <= 2: # Only BOS + EOS tokens, no actual content print(f"โš ๏ธ Skipping very short text: {text[:50]}...") continue tokenized.append(tokens) except Exception as e: # Handle tokenization errors gracefully to avoid stopping training # Common causes: encoding issues, very long texts, special characters print(f"โš ๏ธ Failed to tokenize passage: {text[:50]}... Error: {e}") continue # Log tokenization statistics for monitoring if tokenized: avg_length = sum(len(tokens) for tokens in tokenized) / len(tokenized) print(f"๐Ÿ“Š Tokenized {len(tokenized)} passages, avg length: {avg_length:.1f} tokens") return tokenized def _create_training_examples(self, token_sequences: List[List[int]]) -> List[Tuple[List[int], List[int]]]: """ Create training examples with input and target sequences. For autoregressive training, targets are inputs shifted by one position. Args: token_sequences: List of tokenized sequences Returns: List of (input_ids, target_ids) tuples """ examples = [] for tokens in token_sequences: if len(tokens) < 2: # Need at least 2 tokens for input/target pair continue # For sequences longer than seq_len, create multiple examples with sliding window if len(tokens) > self.seq_len: # Create overlapping windows (50% overlap for better learning) stride = self.seq_len // 2 for i in range(0, len(tokens) - self.seq_len, stride): input_ids = tokens[i:i + self.seq_len] target_ids = tokens[i + 1:i + self.seq_len + 1] examples.append((input_ids, target_ids)) else: # Pad shorter sequences input_ids = tokens[:-1] # All but last token target_ids = tokens[1:] # All but first token # Pad to seq_len if necessary while len(input_ids) < self.seq_len: input_ids.append(self.tokenizer.pad_id()) target_ids.append(-1) # Use -1 for padding in targets (ignored in loss) # Truncate if still too long input_ids = input_ids[:self.seq_len] target_ids = target_ids[:self.seq_len] examples.append((input_ids, target_ids)) return examples def _create_batch(self, examples: List[Tuple[List[int], List[int]]]) -> Tuple[torch.Tensor, torch.Tensor]: """ Create a batch tensor from training examples. Args: examples: List of (input_ids, target_ids) tuples Returns: Tuple of (input_tensor, target_tensor) """ if not examples: raise ValueError("Cannot create batch from empty examples") batch_size = len(examples) # Initialize tensors input_ids = torch.zeros((batch_size, self.seq_len), dtype=torch.long) target_ids = torch.full((batch_size, self.seq_len), -1, dtype=torch.long) # Fill tensors for i, (inp, tgt) in enumerate(examples): input_ids[i, :len(inp)] = torch.tensor(inp, dtype=torch.long) target_ids[i, :len(tgt)] = torch.tensor(tgt, dtype=torch.long) return input_ids, target_ids def __iter__(self) -> Iterator[Tuple[torch.Tensor, torch.Tensor]]: """ Iterate over training batches. Yields: Tuple of (input_ids, target_ids) tensors """ self.current_line = 0 while self.current_line < self.total_lines: # Read chunk of text texts = self._read_chunk(self.current_line) if not texts: break # Tokenize texts token_sequences = self._tokenize_texts(texts) # Create training examples examples = self._create_training_examples(token_sequences) # Shuffle examples if requested if self.shuffle: random.shuffle(examples) # Create batches for i in range(0, len(examples), self.batch_size): batch_examples = examples[i:i + self.batch_size] if len(batch_examples) == self.batch_size: # Only yield full batches try: input_ids, target_ids = self._create_batch(batch_examples) yield input_ids, target_ids except Exception as e: print(f"โš ๏ธ Failed to create batch: {e}") continue # Update progress self.current_line += len(texts) # Clean up memory del texts, token_sequences, examples gc.collect() def get_data_stats(self) -> dict: """ Get statistics about the training data. Returns: Dictionary with data statistics """ print("๐Ÿ“Š Analyzing training data...") # Sample some data to get statistics sample_texts = self._read_chunk(0)[:100] # Sample first 100 passages token_sequences = self._tokenize_texts(sample_texts) if token_sequences: sequence_lengths = [len(seq) for seq in token_sequences] avg_length = sum(sequence_lengths) / len(sequence_lengths) max_length = max(sequence_lengths) min_length = min(sequence_lengths) else: avg_length = max_length = min_length = 0 # Estimate total tokens estimated_total_tokens = int(avg_length * self.total_lines) # Estimate number of batches per epoch examples_per_passage = max(1, avg_length // self.seq_len) total_examples = int(self.total_lines * examples_per_passage) batches_per_epoch = total_examples // self.batch_size stats = { "total_passages": self.total_lines, "avg_tokens_per_passage": avg_length, "min_tokens_per_passage": min_length, "max_tokens_per_passage": max_length, "estimated_total_tokens": estimated_total_tokens, "estimated_examples_per_epoch": total_examples, "estimated_batches_per_epoch": batches_per_epoch, "sequence_length": self.seq_len, "batch_size": self.batch_size, "vocabulary_size": self.tokenizer.vocab_size() } print(f"โœ“ Data analysis complete:") print(f" Total passages: {stats['total_passages']:,}") print(f" Avg tokens per passage: {stats['avg_tokens_per_passage']:.1f}") print(f" Estimated total tokens: {stats['estimated_total_tokens']:,}") print(f" Estimated batches per epoch: {stats['estimated_batches_per_epoch']:,}") return stats def test_data_loader(): """Test function for the data loader.""" print("๐Ÿงช Testing TextDataLoader...") # Test with small parameters try: loader = TextDataLoader( data_file="data/clean/training_data.txt", tokenizer_path="data/tokenizer/tokenizer.model", seq_len=128, batch_size=2, chunk_size=10 # Small for testing ) # Get data statistics stats = loader.get_data_stats() # Test iteration print("\n๐Ÿ”„ Testing batch iteration...") start_time = time.time() batch_count = 0 for batch_idx, (input_ids, target_ids) in enumerate(loader): batch_count += 1 print(f"Batch {batch_idx + 1}:") print(f" Input shape: {input_ids.shape}") print(f" Target shape: {target_ids.shape}") print(f" Sample input tokens: {input_ids[0][:10].tolist()}") print(f" Sample target tokens: {target_ids[0][:10].tolist()}") if batch_idx >= 2: # Only test first few batches break test_time = time.time() - start_time print(f"\nโœ“ Data loader test completed successfully!") print(f" Processed {batch_count} batches in {test_time:.2f}s") print(f" Average time per batch: {test_time/max(1, batch_count):.2f}s") return True except Exception as e: print(f"โŒ Data loader test failed: {e}") import traceback traceback.print_exc() return False if __name__ == "__main__": test_data_loader()