Spaces:
Runtime error
Runtime error
import gradio as gr | |
import os | |
from langchain.document_loaders import OnlinePDFLoader #for laoding the pdf | |
from langchain.embeddings import OpenAIEmbeddings # for creating embeddings | |
from langchain.vectorstores import Chroma # for the vectorization part | |
from langchain.chains import ConversationalRetrievalChain # for conversing with chatGPT | |
from langchain.chat_models import ChatOpenAI # the LLM model we'll use (ChatGPT) | |
def loading_pdf(): | |
return "Loading..." | |
def pdf_changes(pdf_doc, open_ai_key): | |
if openai_key is not None: | |
os.environ['OPENAI_API_KEY'] = open_ai_key | |
#Load the pdf file | |
loader = OnlinePDFLoader(pdf_doc.name) | |
pages = loader.load_and_split() | |
#Create an instance of OpenAIEmbeddings, which is responsible for generating embeddings for text | |
embeddings = OpenAIEmbeddings() | |
#To create a vector store, we use the Chroma class, which takes the documents (pages in our case), the embeddings instance, and a directory to store the vector data | |
vectordb = Chroma.from_documents(pages, embedding=embeddings) | |
#Finally, we create the bot using the ConversationalRetrievalChain class | |
#A ConversationalRetrievalChain is similar to a RetrievalQAChain, except that the ConversationalRetrievalChain allows for | |
#passing in of a chat history which can be used to allow for follow up questions. | |
global pdf_qa | |
pdf_qa = ConversationalRetrievalChain.from_llm(ChatOpenAI(temperature=0, model_name="gpt-4"), vectordb.as_retriever(), return_source_documents=False) | |
return "Ready" | |
else: | |
return "Please provide an OpenAI API key" | |
def add_text(history, text): | |
history = history + [(text, None)] | |
return history, "" | |
def bot(history): | |
response = infer(history[-1][0], history) | |
history[-1][1] = "" | |
for character in response: | |
history[-1][1] += character | |
time.sleep(0.05) | |
yield history | |
def infer(question, history): | |
results = [] | |
for human, ai in history[:-1]: | |
pair = (human, ai) | |
res.append(pair) | |
chat_history = results | |
print(chat_history) | |
query = question | |
result = qa({"question": query, "chat_history": chat_history}) | |
print(result) | |
return result["answer"] | |
css=""" | |
#col-container {max-width: 700px; margin-left: auto; margin-right: auto;} | |
""" | |
title = """ | |
<div style="text-align: center;max-width: 700px;"> | |
<h1>Chat with PDF • OpenAI</h1> | |
<p style="text-align: center;">Upload a .PDF, click the "Load PDF to LangChain" button, <br /> | |
when everything is ready, go ahead and start typing your questions <br /> | |
This version is set to store chat history, and uses gpt-4 as LLM</p> | |
</div> | |
""" | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.HTML(title) | |
with gr.Column(): | |
openai_key = gr.Textbox(label="Your OpenAI API key", type="password") | |
pdf_doc = gr.File(label="Load a pdf", file_types=['.pdf'], type="file") | |
with gr.Row(): | |
langchain_status = gr.Textbox(label="Status", placeholder="", interactive=False) | |
load_pdf = gr.Button("Load pdf to langchain") | |
chatbot = gr.Chatbot([], elem_id="chatbot").style(height=350) | |
question = gr.Textbox(label="Question", placeholder="Type your question and hit Enter ") | |
submit_btn = gr.Button("Send Message") | |
load_pdf.click(loading_pdf, None, langchain_status, queue=False) | |
load_pdf.click(pdf_changes, inputs=[pdf_doc, openai_key], outputs=[langchain_status], queue=False) | |
question.submit(add_text, [chatbot, question], [chatbot, question]).then( | |
bot, chatbot, chatbot | |
) | |
submit_btn.click(add_text, [chatbot, question], [chatbot, question]).then( | |
bot, chatbot, chatbot) | |
demo.launch() |