""" Adapted from code originally written by David Novotny. """ import torch from pytorch3d.transforms import Rotate, Translate import cv2 import numpy as np import torch from pytorch3d.renderer import PerspectiveCameras, RayBundle def intersect_skew_line_groups(p, r, mask): # p, r both of shape (B, N, n_intersected_lines, 3) # mask of shape (B, N, n_intersected_lines) p_intersect, r = intersect_skew_lines_high_dim(p, r, mask=mask) if p_intersect is None: return None, None, None, None _, p_line_intersect = point_line_distance( p, r, p_intersect[..., None, :].expand_as(p) ) intersect_dist_squared = ((p_line_intersect - p_intersect[..., None, :]) ** 2).sum( dim=-1 ) return p_intersect, p_line_intersect, intersect_dist_squared, r def intersect_skew_lines_high_dim(p, r, mask=None): # Implements https://en.wikipedia.org/wiki/Skew_lines In more than two dimensions dim = p.shape[-1] # make sure the heading vectors are l2-normed if mask is None: mask = torch.ones_like(p[..., 0]) r = torch.nn.functional.normalize(r, dim=-1) eye = torch.eye(dim, device=p.device, dtype=p.dtype)[None, None] I_min_cov = (eye - (r[..., None] * r[..., None, :])) * mask[..., None, None] sum_proj = I_min_cov.matmul(p[..., None]).sum(dim=-3) # I_eps = torch.zeros_like(I_min_cov.sum(dim=-3)) + 1e-10 # p_intersect = torch.pinverse(I_min_cov.sum(dim=-3) + I_eps).matmul(sum_proj)[..., 0] p_intersect = torch.linalg.lstsq(I_min_cov.sum(dim=-3), sum_proj).solution[..., 0] # I_min_cov.sum(dim=-3): torch.Size([1, 1, 3, 3]) # sum_proj: torch.Size([1, 1, 3, 1]) # p_intersect = np.linalg.lstsq(I_min_cov.sum(dim=-3).numpy(), sum_proj.numpy(), rcond=None)[0] if torch.any(torch.isnan(p_intersect)): print(p_intersect) return None, None ipdb.set_trace() assert False return p_intersect, r def point_line_distance(p1, r1, p2): df = p2 - p1 proj_vector = df - ((df * r1).sum(dim=-1, keepdim=True) * r1) line_pt_nearest = p2 - proj_vector d = (proj_vector).norm(dim=-1) return d, line_pt_nearest def compute_optical_axis_intersection(cameras): centers = cameras.get_camera_center() principal_points = cameras.principal_point one_vec = torch.ones((len(cameras), 1), device=centers.device) optical_axis = torch.cat((principal_points, one_vec), -1) # optical_axis = torch.cat( # (principal_points, cameras.focal_length[:, 0].unsqueeze(1)), -1 # ) pp = cameras.unproject_points(optical_axis, from_ndc=True, world_coordinates=True) pp2 = torch.diagonal(pp, dim1=0, dim2=1).T directions = pp2 - centers centers = centers.unsqueeze(0).unsqueeze(0) directions = directions.unsqueeze(0).unsqueeze(0) p_intersect, p_line_intersect, _, r = intersect_skew_line_groups( p=centers, r=directions, mask=None ) if p_intersect is None: dist = None else: p_intersect = p_intersect.squeeze().unsqueeze(0) dist = (p_intersect - centers).norm(dim=-1) return p_intersect, dist, p_line_intersect, pp2, r def normalize_cameras(cameras, scale=1.0): """ Normalizes cameras such that the optical axes point to the origin, the rotation is identity, and the norm of the translation of the first camera is 1. Args: cameras (pytorch3d.renderer.cameras.CamerasBase). scale (float): Norm of the translation of the first camera. Returns: new_cameras (pytorch3d.renderer.cameras.CamerasBase): Normalized cameras. undo_transform (function): Function that undoes the normalization. """ # Let distance from first camera to origin be unit new_cameras = cameras.clone() new_transform = ( new_cameras.get_world_to_view_transform() ) # potential R is not valid matrix p_intersect, dist, p_line_intersect, pp, r = compute_optical_axis_intersection( cameras ) if p_intersect is None: print("Warning: optical axes code has a nan. Returning identity cameras.") new_cameras.R[:] = torch.eye(3, device=cameras.R.device, dtype=cameras.R.dtype) new_cameras.T[:] = torch.tensor( [0, 0, 1], device=cameras.T.device, dtype=cameras.T.dtype ) return new_cameras, lambda x: x d = dist.squeeze(dim=1).squeeze(dim=0)[0] # Degenerate case if d == 0: print(cameras.T) print(new_transform.get_matrix()[:, 3, :3]) assert False assert d != 0 # Can't figure out how to make scale part of the transform too without messing up R. # Ideally, we would just wrap it all in a single Pytorch3D transform so that it # would work with any structure (eg PointClouds, Meshes). tR = Rotate(new_cameras.R[0].unsqueeze(0)).inverse() tT = Translate(p_intersect) t = tR.compose(tT) new_transform = t.compose(new_transform) new_cameras.R = new_transform.get_matrix()[:, :3, :3] new_cameras.T = new_transform.get_matrix()[:, 3, :3] / d * scale def undo_transform(cameras): cameras_copy = cameras.clone() cameras_copy.T *= d / scale new_t = ( t.inverse().compose(cameras_copy.get_world_to_view_transform()).get_matrix() ) cameras_copy.R = new_t[:, :3, :3] cameras_copy.T = new_t[:, 3, :3] return cameras_copy return new_cameras, undo_transform def first_camera_transform(cameras, rotation_only=True): new_cameras = cameras.clone() new_transform = new_cameras.get_world_to_view_transform() tR = Rotate(new_cameras.R[0].unsqueeze(0)) if rotation_only: t = tR.inverse() else: tT = Translate(new_cameras.T[0].unsqueeze(0)) t = tR.compose(tT).inverse() new_transform = t.compose(new_transform) new_cameras.R = new_transform.get_matrix()[:, :3, :3] new_cameras.T = new_transform.get_matrix()[:, 3, :3] return new_cameras def get_identity_cameras_with_intrinsics(cameras): D = len(cameras) device = cameras.R.device new_cameras = cameras.clone() new_cameras.R = torch.eye(3, device=device).unsqueeze(0).repeat((D, 1, 1)) new_cameras.T = torch.zeros((D, 3), device=device) return new_cameras def normalize_cameras_batch(cameras, scale=1.0, normalize_first_camera=False): new_cameras = [] undo_transforms = [] for cam in cameras: if normalize_first_camera: # Normalize cameras such that first camera is identity and origin is at # first camera center. normalized_cameras = first_camera_transform(cam, rotation_only=False) undo_transform = None else: normalized_cameras, undo_transform = normalize_cameras(cam, scale=scale) new_cameras.append(normalized_cameras) undo_transforms.append(undo_transform) return new_cameras, undo_transforms class Rays(object): def __init__( self, rays=None, origins=None, directions=None, moments=None, is_plucker=False, moments_rescale=1.0, ndc_coordinates=None, crop_parameters=None, num_patches_x=16, num_patches_y=16, ): """ Ray class to keep track of current ray representation. Args: rays: (..., 6). origins: (..., 3). directions: (..., 3). moments: (..., 3). is_plucker: If True, rays are in plucker coordinates (Default: False). moments_rescale: Rescale the moment component of the rays by a scalar. ndc_coordinates: (..., 2): NDC coordinates of each ray. """ if rays is not None: self.rays = rays self._is_plucker = is_plucker elif origins is not None and directions is not None: self.rays = torch.cat((origins, directions), dim=-1) self._is_plucker = False elif directions is not None and moments is not None: self.rays = torch.cat((directions, moments), dim=-1) self._is_plucker = True else: raise Exception("Invalid combination of arguments") if moments_rescale != 1.0: self.rescale_moments(moments_rescale) if ndc_coordinates is not None: self.ndc_coordinates = ndc_coordinates elif crop_parameters is not None: # (..., H, W, 2) xy_grid = compute_ndc_coordinates( crop_parameters, num_patches_x=num_patches_x, num_patches_y=num_patches_y, )[..., :2] xy_grid = xy_grid.reshape(*xy_grid.shape[:-3], -1, 2) self.ndc_coordinates = xy_grid else: self.ndc_coordinates = None def __getitem__(self, index): return Rays( rays=self.rays[index], is_plucker=self._is_plucker, ndc_coordinates=( self.ndc_coordinates[index] if self.ndc_coordinates is not None else None ), ) def to_spatial(self, include_ndc_coordinates=False): """ Converts rays to spatial representation: (..., H * W, 6) --> (..., 6, H, W) Returns: torch.Tensor: (..., 6, H, W) """ rays = self.to_plucker().rays *batch_dims, P, D = rays.shape H = W = int(np.sqrt(P)) assert H * W == P rays = torch.transpose(rays, -1, -2) # (..., 6, H * W) rays = rays.reshape(*batch_dims, D, H, W) if include_ndc_coordinates: ndc_coords = self.ndc_coordinates.transpose(-1, -2) # (..., 2, H * W) ndc_coords = ndc_coords.reshape(*batch_dims, 2, H, W) rays = torch.cat((rays, ndc_coords), dim=-3) return rays def rescale_moments(self, scale): """ Rescale the moment component of the rays by a scalar. Might be desirable since moments may come from a very narrow distribution. Note that this modifies in place! """ if self.is_plucker: self.rays[..., 3:] *= scale return self else: return self.to_plucker().rescale_moments(scale) @classmethod def from_spatial(cls, rays, moments_rescale=1.0, ndc_coordinates=None): """ Converts rays from spatial representation: (..., 6, H, W) --> (..., H * W, 6) Args: rays: (..., 6, H, W) Returns: Rays: (..., H * W, 6) """ *batch_dims, D, H, W = rays.shape rays = rays.reshape(*batch_dims, D, H * W) rays = torch.transpose(rays, -1, -2) return cls( rays=rays, is_plucker=True, moments_rescale=moments_rescale, ndc_coordinates=ndc_coordinates, ) def to_point_direction(self, normalize_moment=True): """ Convert to point direction representation . Returns: rays: (..., 6). """ if self._is_plucker: direction = torch.nn.functional.normalize(self.rays[..., :3], dim=-1) moment = self.rays[..., 3:] if normalize_moment: c = torch.linalg.norm(direction, dim=-1, keepdim=True) moment = moment / c points = torch.cross(direction, moment, dim=-1) return Rays( rays=torch.cat((points, direction), dim=-1), is_plucker=False, ndc_coordinates=self.ndc_coordinates, ) else: return self def to_plucker(self): """ Convert to plucker representation . """ if self.is_plucker: return self else: ray = self.rays.clone() ray_origins = ray[..., :3] ray_directions = ray[..., 3:] # Normalize ray directions to unit vectors ray_directions = ray_directions / ray_directions.norm(dim=-1, keepdim=True) plucker_normal = torch.cross(ray_origins, ray_directions, dim=-1) new_ray = torch.cat([ray_directions, plucker_normal], dim=-1) return Rays( rays=new_ray, is_plucker=True, ndc_coordinates=self.ndc_coordinates ) def get_directions(self, normalize=True): if self.is_plucker: directions = self.rays[..., :3] else: directions = self.rays[..., 3:] if normalize: directions = torch.nn.functional.normalize(directions, dim=-1) return directions def get_origins(self): if self.is_plucker: origins = self.to_point_direction().get_origins() else: origins = self.rays[..., :3] return origins def get_moments(self): if self.is_plucker: moments = self.rays[..., 3:] else: moments = self.to_plucker().get_moments() return moments def get_ndc_coordinates(self): return self.ndc_coordinates @property def is_plucker(self): return self._is_plucker @property def device(self): return self.rays.device def __repr__(self, *args, **kwargs): ray_str = self.rays.__repr__(*args, **kwargs)[6:] # remove "tensor" if self._is_plucker: return "PluRay" + ray_str else: return "DirRay" + ray_str def to(self, device): self.rays = self.rays.to(device) def clone(self): return Rays(rays=self.rays.clone(), is_plucker=self._is_plucker) @property def shape(self): return self.rays.shape def visualize(self): directions = torch.nn.functional.normalize(self.get_directions(), dim=-1).cpu() moments = torch.nn.functional.normalize(self.get_moments(), dim=-1).cpu() return (directions + 1) / 2, (moments + 1) / 2 def to_ray_bundle(self, length=0.3, recenter=True): lengths = torch.ones_like(self.get_origins()[..., :2]) * length lengths[..., 0] = 0 if recenter: centers, _ = intersect_skew_lines_high_dim( self.get_origins(), self.get_directions() ) centers = centers.unsqueeze(1).repeat(1, lengths.shape[1], 1) else: centers = self.get_origins() return RayBundle( origins=centers, directions=self.get_directions(), lengths=lengths, xys=self.get_directions(), ) def cameras_to_rays( cameras, crop_parameters, use_half_pix=True, use_plucker=True, num_patches_x=16, num_patches_y=16, ): """ Unprojects rays from camera center to grid on image plane. Args: cameras: Pytorch3D cameras to unproject. Can be batched. crop_parameters: Crop parameters in NDC (cc_x, cc_y, crop_width, scale). Shape is (B, 4). use_half_pix: If True, use half pixel offset (Default: True). use_plucker: If True, return rays in plucker coordinates (Default: False). num_patches_x: Number of patches in x direction (Default: 16). num_patches_y: Number of patches in y direction (Default: 16). """ unprojected = [] crop_parameters_list = ( crop_parameters if crop_parameters is not None else [None for _ in cameras] ) for camera, crop_param in zip(cameras, crop_parameters_list): xyd_grid = compute_ndc_coordinates( crop_parameters=crop_param, use_half_pix=use_half_pix, num_patches_x=num_patches_x, num_patches_y=num_patches_y, ) unprojected.append( camera.unproject_points( xyd_grid.reshape(-1, 3), world_coordinates=True, from_ndc=True ) ) unprojected = torch.stack(unprojected, dim=0) # (N, P, 3) origins = cameras.get_camera_center().unsqueeze(1) # (N, 1, 3) origins = origins.repeat(1, num_patches_x * num_patches_y, 1) # (N, P, 3) directions = unprojected - origins rays = Rays( origins=origins, directions=directions, crop_parameters=crop_parameters, num_patches_x=num_patches_x, num_patches_y=num_patches_y, ) if use_plucker: return rays.to_plucker() return rays def rays_to_cameras( rays, crop_parameters, num_patches_x=16, num_patches_y=16, use_half_pix=True, sampled_ray_idx=None, cameras=None, focal_length=(3.453,), ): """ If cameras are provided, will use those intrinsics. Otherwise will use the provided focal_length(s). Dataset default is 3.32. Args: rays (Rays): (N, P, 6) crop_parameters (torch.Tensor): (N, 4) """ device = rays.device origins = rays.get_origins() directions = rays.get_directions() camera_centers, _ = intersect_skew_lines_high_dim(origins, directions) # Retrieve target rays if cameras is None: if len(focal_length) == 1: focal_length = focal_length * rays.shape[0] I_camera = PerspectiveCameras(focal_length=focal_length, device=device) else: # Use same intrinsics but reset to identity extrinsics. I_camera = cameras.clone() I_camera.R[:] = torch.eye(3, device=device) I_camera.T[:] = torch.zeros(3, device=device) I_patch_rays = cameras_to_rays( cameras=I_camera, num_patches_x=num_patches_x, num_patches_y=num_patches_y, use_half_pix=use_half_pix, crop_parameters=crop_parameters, ).get_directions() if sampled_ray_idx is not None: I_patch_rays = I_patch_rays[:, sampled_ray_idx] # Compute optimal rotation to align rays R = torch.zeros_like(I_camera.R) for i in range(len(I_camera)): R[i] = compute_optimal_rotation_alignment( I_patch_rays[i], directions[i], ) # Construct and return rotated camera cam = I_camera.clone() cam.R = R cam.T = -torch.matmul(R.transpose(1, 2), camera_centers.unsqueeze(2)).squeeze(2) return cam # https://www.reddit.com/r/learnmath/comments/v1crd7/linear_algebra_qr_to_ql_decomposition/ def ql_decomposition(A): P = torch.tensor([[0, 0, 1], [0, 1, 0], [1, 0, 0]], device=A.device).float() A_tilde = torch.matmul(A, P) Q_tilde, R_tilde = torch.linalg.qr(A_tilde) Q = torch.matmul(Q_tilde, P) L = torch.matmul(torch.matmul(P, R_tilde), P) d = torch.diag(L) Q[:, 0] *= torch.sign(d[0]) Q[:, 1] *= torch.sign(d[1]) Q[:, 2] *= torch.sign(d[2]) L[0] *= torch.sign(d[0]) L[1] *= torch.sign(d[1]) L[2] *= torch.sign(d[2]) return Q, L def rays_to_cameras_homography( rays, crop_parameters, num_patches_x=16, num_patches_y=16, use_half_pix=True, sampled_ray_idx=None, reproj_threshold=0.2, ): """ Args: rays (Rays): (N, P, 6) crop_parameters (torch.Tensor): (N, 4) """ device = rays.device origins = rays.get_origins() directions = rays.get_directions() camera_centers, _ = intersect_skew_lines_high_dim(origins, directions) # Retrieve target rays I_camera = PerspectiveCameras(focal_length=[1] * rays.shape[0], device=device) I_patch_rays = cameras_to_rays( cameras=I_camera, num_patches_x=num_patches_x, num_patches_y=num_patches_y, use_half_pix=use_half_pix, crop_parameters=crop_parameters, ).get_directions() if sampled_ray_idx is not None: I_patch_rays = I_patch_rays[:, sampled_ray_idx] # Compute optimal rotation to align rays Rs = [] focal_lengths = [] principal_points = [] for i in range(rays.shape[-3]): R, f, pp = compute_optimal_rotation_intrinsics( I_patch_rays[i], directions[i], reproj_threshold=reproj_threshold, ) Rs.append(R) focal_lengths.append(f) principal_points.append(pp) R = torch.stack(Rs) focal_lengths = torch.stack(focal_lengths) principal_points = torch.stack(principal_points) T = -torch.matmul(R.transpose(1, 2), camera_centers.unsqueeze(2)).squeeze(2) return PerspectiveCameras( R=R, T=T, focal_length=focal_lengths, principal_point=principal_points, device=device, ) def compute_optimal_rotation_alignment(A, B): """ Compute optimal R that minimizes: || A - B @ R ||_F Args: A (torch.Tensor): (N, 3) B (torch.Tensor): (N, 3) Returns: R (torch.tensor): (3, 3) """ # normally with R @ B, this would be A @ B.T H = B.T @ A U, _, Vh = torch.linalg.svd(H, full_matrices=True) s = torch.linalg.det(U @ Vh) S_prime = torch.diag(torch.tensor([1, 1, torch.sign(s)], device=A.device)) return U @ S_prime @ Vh def compute_optimal_rotation_intrinsics( rays_origin, rays_target, z_threshold=1e-4, reproj_threshold=0.2 ): """ Note: for some reason, f seems to be 1/f. Args: rays_origin (torch.Tensor): (N, 3) rays_target (torch.Tensor): (N, 3) z_threshold (float): Threshold for z value to be considered valid. Returns: R (torch.tensor): (3, 3) focal_length (torch.tensor): (2,) principal_point (torch.tensor): (2,) """ device = rays_origin.device z_mask = torch.logical_and( torch.abs(rays_target) > z_threshold, torch.abs(rays_origin) > z_threshold )[:, 2] rays_target = rays_target[z_mask] rays_origin = rays_origin[z_mask] rays_origin = rays_origin[:, :2] / rays_origin[:, -1:] rays_target = rays_target[:, :2] / rays_target[:, -1:] A, _ = cv2.findHomography( rays_origin.cpu().numpy(), rays_target.cpu().numpy(), cv2.RANSAC, reproj_threshold, ) A = torch.from_numpy(A).float().to(device) if torch.linalg.det(A) < 0: A = -A R, L = ql_decomposition(A) L = L / L[2][2] f = torch.stack((L[0][0], L[1][1])) pp = torch.stack((L[2][0], L[2][1])) return R, f, pp def compute_ndc_coordinates( crop_parameters=None, use_half_pix=True, num_patches_x=16, num_patches_y=16, device=None, ): """ Computes NDC Grid using crop_parameters. If crop_parameters is not provided, then it assumes that the crop is the entire image (corresponding to an NDC grid where top left corner is (1, 1) and bottom right corner is (-1, -1)). """ if crop_parameters is None: cc_x, cc_y, width = 0, 0, 2 else: if len(crop_parameters.shape) > 1: return torch.stack( [ compute_ndc_coordinates( crop_parameters=crop_param, use_half_pix=use_half_pix, num_patches_x=num_patches_x, num_patches_y=num_patches_y, ) for crop_param in crop_parameters ], dim=0, ) device = crop_parameters.device cc_x, cc_y, width, _ = crop_parameters dx = 1 / num_patches_x dy = 1 / num_patches_y if use_half_pix: min_y = 1 - dy max_y = -min_y min_x = 1 - dx max_x = -min_x else: min_y = min_x = 1 max_y = -1 + 2 * dy max_x = -1 + 2 * dx y, x = torch.meshgrid( torch.linspace(min_y, max_y, num_patches_y, dtype=torch.float32, device=device), torch.linspace(min_x, max_x, num_patches_x, dtype=torch.float32, device=device), indexing="ij", ) x_prime = x * width / 2 - cc_x y_prime = y * width / 2 - cc_y xyd_grid = torch.stack([x_prime, y_prime, torch.ones_like(x)], dim=-1) return xyd_grid