from toolbox import CatchException, update_ui, promote_file_to_downloadzone from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency import datetime, json def fetch_items(list_of_items, batch_size): for i in range(0, len(list_of_items), batch_size): yield list_of_items[i:i + batch_size] def string_to_options(arguments): import argparse import shlex # Create an argparse.ArgumentParser instance parser = argparse.ArgumentParser() # Add command-line arguments parser.add_argument("--llm_to_learn", type=str, help="LLM model to learn", default="gpt-3.5-turbo") parser.add_argument("--prompt_prefix", type=str, help="Prompt prefix", default='') parser.add_argument("--system_prompt", type=str, help="System prompt", default='') parser.add_argument("--batch", type=int, help="System prompt", default=50) parser.add_argument("--pre_seq_len", type=int, help="pre_seq_len", default=50) parser.add_argument("--learning_rate", type=float, help="learning_rate", default=2e-2) parser.add_argument("--num_gpus", type=int, help="num_gpus", default=1) parser.add_argument("--json_dataset", type=str, help="json_dataset", default="") parser.add_argument("--ptuning_directory", type=str, help="ptuning_directory", default="") # Parse the arguments args = parser.parse_args(shlex.split(arguments)) return args @CatchException def 微调数据集生成(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request): """ txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径 llm_kwargs gpt模型参数,如温度和top_p等,一般原样传递下去就行 plugin_kwargs 插件模型的参数 chatbot 聊天显示框的句柄,用于显示给用户 history 聊天历史,前情提要 system_prompt 给gpt的静默提醒 user_request 当前用户的请求信息(IP地址等) """ history = [] # 清空历史,以免输入溢出 chatbot.append(("这是什么功能?", "[Local Message] 微调数据集生成")) if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg") args = plugin_kwargs.get("advanced_arg", None) if args is None: chatbot.append(("没给定指令", "退出")) yield from update_ui(chatbot=chatbot, history=history); return else: arguments = string_to_options(arguments=args) dat = [] with open(txt, 'r', encoding='utf8') as f: for line in f.readlines(): json_dat = json.loads(line) dat.append(json_dat["content"]) llm_kwargs['llm_model'] = arguments.llm_to_learn for batch in fetch_items(dat, arguments.batch): res = yield from request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency( inputs_array=[f"{arguments.prompt_prefix}\n\n{b}" for b in (batch)], inputs_show_user_array=[f"Show Nothing" for _ in (batch)], llm_kwargs=llm_kwargs, chatbot=chatbot, history_array=[[] for _ in (batch)], sys_prompt_array=[arguments.system_prompt for _ in (batch)], max_workers=10 # OpenAI所允许的最大并行过载 ) with open(txt+'.generated.json', 'a+', encoding='utf8') as f: for b, r in zip(batch, res[1::2]): f.write(json.dumps({"content":b, "summary":r}, ensure_ascii=False)+'\n') promote_file_to_downloadzone(txt+'.generated.json', rename_file='generated.json', chatbot=chatbot) return @CatchException def 启动微调(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request): """ txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径 llm_kwargs gpt模型参数,如温度和top_p等,一般原样传递下去就行 plugin_kwargs 插件模型的参数 chatbot 聊天显示框的句柄,用于显示给用户 history 聊天历史,前情提要 system_prompt 给gpt的静默提醒 user_request 当前用户的请求信息(IP地址等) """ import subprocess history = [] # 清空历史,以免输入溢出 chatbot.append(("这是什么功能?", "[Local Message] 微调数据集生成")) if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg") args = plugin_kwargs.get("advanced_arg", None) if args is None: chatbot.append(("没给定指令", "退出")) yield from update_ui(chatbot=chatbot, history=history); return else: arguments = string_to_options(arguments=args) pre_seq_len = arguments.pre_seq_len # 128 learning_rate = arguments.learning_rate # 2e-2 num_gpus = arguments.num_gpus # 1 json_dataset = arguments.json_dataset # 't_code.json' ptuning_directory = arguments.ptuning_directory # '/home/hmp/ChatGLM2-6B/ptuning' command = f"torchrun --standalone --nnodes=1 --nproc-per-node={num_gpus} main.py \ --do_train \ --train_file AdvertiseGen/{json_dataset} \ --validation_file AdvertiseGen/{json_dataset} \ --preprocessing_num_workers 20 \ --prompt_column content \ --response_column summary \ --overwrite_cache \ --model_name_or_path THUDM/chatglm2-6b \ --output_dir output/clothgen-chatglm2-6b-pt-{pre_seq_len}-{learning_rate} \ --overwrite_output_dir \ --max_source_length 256 \ --max_target_length 256 \ --per_device_train_batch_size 1 \ --per_device_eval_batch_size 1 \ --gradient_accumulation_steps 16 \ --predict_with_generate \ --max_steps 100 \ --logging_steps 10 \ --save_steps 20 \ --learning_rate {learning_rate} \ --pre_seq_len {pre_seq_len} \ --quantization_bit 4" process = subprocess.Popen(command, shell=True, cwd=ptuning_directory) try: process.communicate(timeout=3600*24) except subprocess.TimeoutExpired: process.kill() return