import gradio as gr import torch import numpy as np from transformers import VitsModel, AutoTokenizer LANG_MODEL_MAP = { "English": "facebook/mms-tts-eng", "Hindi": "facebook/mms-tts-hin", "Tamil": "facebook/mms-tts-tam", "Malayalam": "facebook/mms-tts-mal", "Kannada": "facebook/mms-tts-kan", "Telugu": "facebook/mms-tts-tel" } device = torch.device("cuda" if torch.cuda.is_available() else "cpu") cache = {} def load_model_and_tokenizer(language): model_name = LANG_MODEL_MAP[language] if model_name not in cache: tokenizer = AutoTokenizer.from_pretrained(model_name) model = VitsModel.from_pretrained(model_name).to(device) cache[model_name] = (tokenizer, model) return cache[model_name] def tts(language, text): if not text.strip(): return 16000, np.zeros(1) # empty waveform if no text tokenizer, model = load_model_and_tokenizer(language) inputs = tokenizer(text, return_tensors="pt").to(device) with torch.no_grad(): output = model(**inputs) waveform = output.waveform.squeeze().cpu().numpy() return 16000, waveform iface = gr.Interface( fn=tts, inputs=[ gr.Dropdown(choices=list(LANG_MODEL_MAP.keys()), label="Select Language"), gr.Textbox(label="Enter Text") ], outputs=gr.Audio(label="Synthesized Speech", type="numpy"), title="Multilingual Text-to-Speech (MMS)", description="Generate speech from text using Meta's MMS models for English, Hindi, Tamil, Malayalam, Kannada and Telugu." ) if __name__ == "__main__": iface.launch()