import streamlit as st import open_clip import torch import requests from PIL import Image from io import BytesIO import time import json import numpy as np # Load model and tokenizer @st.cache_resource def load_model(): model, preprocess_train, preprocess_val = open_clip.create_model_and_transforms('hf-hub:Marqo/marqo-fashionSigLIP') tokenizer = open_clip.get_tokenizer('hf-hub:Marqo/marqo-fashionSigLIP') device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) return model, preprocess_val, tokenizer, device model, preprocess_val, tokenizer, device = load_model() # Load and process data @st.cache_data def load_data(): with open('./musinsa-final.json', 'r', encoding='utf-8') as f: return json.load(f) data = load_data() # Helper functions def load_image_from_url(url, max_retries=3): for attempt in range(max_retries): try: response = requests.get(url, timeout=10) response.raise_for_status() img = Image.open(BytesIO(response.content)).convert('RGB') return img except (requests.RequestException, Image.UnidentifiedImageError) as e: #st.warning(f"Attempt {attempt + 1} failed: {str(e)}") if attempt < max_retries - 1: time.sleep(1) else: #st.error(f"Failed to load image from {url} after {max_retries} attempts") return None def get_image_embedding_from_url(image_url): image = load_image_from_url(image_url) if image is None: return None image_tensor = preprocess_val(image).unsqueeze(0).to(device) with torch.no_grad(): image_features = model.encode_image(image_tensor) image_features /= image_features.norm(dim=-1, keepdim=True) return image_features.cpu().numpy() @st.cache_data def process_database(): database_embeddings = [] database_info = [] for item in data: image_url = item['이미지 링크'][0] embedding = get_image_embedding_from_url(image_url) if embedding is not None: database_embeddings.append(embedding) database_info.append({ 'id': item['\ufeff상품 ID'], 'category': item['카테고리'], 'brand': item['브랜드명'], 'name': item['제품명'], 'price': item['정가'], 'discount': item['할인율'], 'image_url': image_url }) else: st.warning(f"Skipping item {item['상품 ID']} due to image loading failure") if database_embeddings: return np.vstack(database_embeddings), database_info else: st.error("No valid embeddings were generated.") return None, None database_embeddings, database_info = process_database() def get_text_embedding(text): text_tokens = tokenizer([text]).to(device) with torch.no_grad(): text_features = model.encode_text(text_tokens) text_features /= text_features.norm(dim=-1, keepdim=True) return text_features.cpu().numpy() def find_similar_images(query_embedding, top_k=5): similarities = np.dot(database_embeddings, query_embedding.T).squeeze() top_indices = np.argsort(similarities)[::-1][:top_k] results = [] for idx in top_indices: results.append({ 'info': database_info[idx], 'similarity': similarities[idx] }) return results # Streamlit app st.title("Fashion Search App") search_type = st.radio("Search by:", ("Image URL", "Text")) if search_type == "Image URL": query_image_url = st.text_input("Enter image URL:") if st.button("Search by Image"): if query_image_url: query_embedding = get_image_embedding_from_url(query_image_url) if query_embedding is not None: similar_images = find_similar_images(query_embedding) st.image(query_image_url, caption="Query Image", use_column_width=True) st.subheader("Similar Items:") for img in similar_images: col1, col2 = st.columns(2) with col1: st.image(img['info']['image_url'], use_column_width=True) with col2: st.write(f"Name: {img['info']['name']}") st.write(f"Brand: {img['info']['brand']}") st.write(f"Category: {img['info']['category']}") st.write(f"Price: {img['info']['price']}") st.write(f"Discount: {img['info']['discount']}%") st.write(f"Similarity: {img['similarity']:.2f}") else: st.error("Failed to process the image. Please try another URL.") else: st.warning("Please enter an image URL.") else: # Text search query_text = st.text_input("Enter search text:") if st.button("Search by Text"): if query_text: text_embedding = get_text_embedding(query_text) similar_images = find_similar_images(text_embedding) st.subheader("Similar Items:") for img in similar_images: col1, col2 = st.columns(2) with col1: st.image(img['info']['image_url'], use_column_width=True) with col2: st.write(f"Name: {img['info']['name']}") st.write(f"Brand: {img['info']['brand']}") st.write(f"Category: {img['info']['category']}") st.write(f"Price: {img['info']['price']}") st.write(f"Discount: {img['info']['discount']}%") st.write(f"Similarity: {img['similarity']:.2f}") else: st.warning("Please enter a search text.")