import tensorflow as tf import numpy as np def tf_box_filter(x, r): k_size = int(2*r+1) ch = x.get_shape().as_list()[-1] weight = 1/(k_size**2) box_kernel = weight*np.ones((k_size, k_size, ch, 1)) box_kernel = np.array(box_kernel).astype(np.float32) output = tf.nn.depthwise_conv2d(x, box_kernel, [1, 1, 1, 1], 'SAME') return output def guided_filter(x, y, r, eps=1e-2): x_shape = tf.shape(x) #y_shape = tf.shape(y) N = tf_box_filter(tf.ones((1, x_shape[1], x_shape[2], 1), dtype=x.dtype), r) mean_x = tf_box_filter(x, r) / N mean_y = tf_box_filter(y, r) / N cov_xy = tf_box_filter(x * y, r) / N - mean_x * mean_y var_x = tf_box_filter(x * x, r) / N - mean_x * mean_x A = cov_xy / (var_x + eps) b = mean_y - A * mean_x mean_A = tf_box_filter(A, r) / N mean_b = tf_box_filter(b, r) / N output = mean_A * x + mean_b return output def fast_guided_filter(lr_x, lr_y, hr_x, r=1, eps=1e-8): #assert lr_x.shape.ndims == 4 and lr_y.shape.ndims == 4 and hr_x.shape.ndims == 4 lr_x_shape = tf.shape(lr_x) #lr_y_shape = tf.shape(lr_y) hr_x_shape = tf.shape(hr_x) N = tf_box_filter(tf.ones((1, lr_x_shape[1], lr_x_shape[2], 1), dtype=lr_x.dtype), r) mean_x = tf_box_filter(lr_x, r) / N mean_y = tf_box_filter(lr_y, r) / N cov_xy = tf_box_filter(lr_x * lr_y, r) / N - mean_x * mean_y var_x = tf_box_filter(lr_x * lr_x, r) / N - mean_x * mean_x A = cov_xy / (var_x + eps) b = mean_y - A * mean_x mean_A = tf.image.resize_images(A, hr_x_shape[1: 3]) mean_b = tf.image.resize_images(b, hr_x_shape[1: 3]) output = mean_A * hr_x + mean_b return output if __name__ == '__main__': import cv2 from tqdm import tqdm input_photo = tf.placeholder(tf.float32, [1, None, None, 3]) #input_superpixel = tf.placeholder(tf.float32, [16, 256, 256, 3]) output = guided_filter(input_photo, input_photo, 5, eps=1) image = cv2.imread('output_figure1/cartoon2.jpg') image = image/127.5 - 1 image = np.expand_dims(image, axis=0) config = tf.ConfigProto() config.gpu_options.allow_growth = True sess = tf.Session(config=config) sess.run(tf.global_variables_initializer()) out = sess.run(output, feed_dict={input_photo: image}) out = (np.squeeze(out)+1)*127.5 out = np.clip(out, 0, 255).astype(np.uint8) cv2.imwrite('output_figure1/cartoon2_filter.jpg', out)