import streamlit as st from transformers import AutoTokenizer, AutoModelForSequenceClassification import numpy as np import torch def main(): st.set_page_config( # Alternate names: setup_page, page, layout layout="centered", # Can be "centered" or "wide". In the future also "dashboard", etc. initial_sidebar_state="auto", # Can be "auto", "expanded", "collapsed" page_title="Emoji-motion!", # String or None. Strings get appended with "• Streamlit". page_icon=None, # String, anything supported by st.image, or None. ) st.title('Emoji-motion!') example_prompts = [ "This space is lit!!", "Today is going to be awesome!", "I love Machine Learning", "Cool cool cool no doubt no doubt no doubt"] example = st.selectbox("Choose a pre-defined example", example_prompts) # Take the message which needs to be processed message = st.text_area('Or type a sentence to see if our AL Algorithm can detect your emotion', example) # st.title(message) st.text('') models_to_choose = ["AlekseyDorkin/xlm-roberta-en-ru-emoji"] BASE_MODEL = st.selectbox("Choose a model", models_to_choose) TOP_N = 5 def preprocess(text): new_text = [] for t in text.split(" "): t = '@user' if t.startswith('@') and len(t) > 1 else t t = 'http' if t.startswith('http') else t new_text.append(t) return " ".join(new_text) @st.cache(allow_output_mutation=True, suppress_st_warning=True, show_spinner=False) def load_model(): tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL) model = AutoModelForSequenceClassification.from_pretrained(BASE_MODEL) return model, tokenizer def get_top_emojis(text, top_n=TOP_N): model, tokenizer = load_model() preprocessed = preprocess(text) inputs = tokenizer(preprocessed, return_tensors="pt") preds = model(**inputs).logits scores = torch.nn.functional.softmax(preds, dim=-1).detach().numpy() ranking = np.argsort(scores) ranking = ranking.squeeze()[::-1][:top_n] emojis = [model.config.id2label[i] for i in ranking] return ', '.join(map(str, emojis)) # Define function to run when submit is clicked def submit(message): if len(message)>0: st.header(get_top_emojis(message)) else: st.error("The text can't be empty") # Run algo when submit button is clicked if(st.button('Submit')): submit(message) st.text('') st.markdown('App created by [@AlekseyDorkin](https://huggingface.co/AlekseyDorkin) \ and [@akshay7](https://huggingface.co/akshay7)',unsafe_allow_html=True) if __name__ == "__main__": main()