import gradio as gr import laion_clap from qdrant_client import QdrantClient import os # Utilisez les variables d'environnement pour la configuration QDRANT_HOST = os.getenv('QDRANT_HOST', 'localhost') QDRANT_PORT = int(os.getenv('QDRANT_PORT', 6333)) # Connexion à Qdrant client = QdrantClient(QDRANT_HOST, port=QDRANT_PORT) print("[INFO] Client created...") # Charger le modèle print("[INFO] Loading the model...") model_name = "laion/larger_clap_music" model = laion_clap.CLAP_Module(enable_fusion=False) model.load_ckpt() # télécharger le checkpoint préentraîné par défaut # Interface Gradio max_results = 10 def sound_search(query): text_embed = model.get_text_embedding([query, ''])[0] # trick because can't accept singleton hits = client.search( collection_name="demo_db7", query_vector=text_embed, limit=max_results, ) return [ gr.Audio( hit.payload['audio_path'], label=f"style: {hit.payload['style']} -- score: {hit.score}") for hit in hits ] with gr.Blocks() as demo: gr.Markdown( """# Sound search database """ ) inp = gr.Textbox(placeholder="What sound are you looking for ?") out = [gr.Audio(label=f"{x}") for x in range(max_results)] # Nécessaire pour avoir différents objets inp.change(sound_search, inp, out) demo.launch()