import streamlit as st import pandas as pd import numpy as np from sklearn.model_selection import train_test_split, GridSearchCV from sklearn.ensemble import RandomForestRegressor from sklearn.metrics import mean_squared_error, r2_score # URL to the Excel dataset on Hugging Face data_url = "https://huggingface.co/datasets/leadingbridge/flat/resolve/main/NorthPoint30.xlsx" @st.cache_resource def load_and_train_model(): df = pd.read_excel(data_url, engine="openpyxl") # Drop columns that are not needed for prediction cols_to_drop = ['Usage', 'Address', 'PricePerSquareFeet', 'InstrumentDate', 'Floor', 'Unit'] df.drop(columns=cols_to_drop, inplace=True, errors='ignore') # Rename useful columns for consistency df.rename(columns={"Floor.1": "Floor", "Unit.1": "Unit"}, inplace=True) required_columns = [ 'District', 'PriceInMillion', 'Longitude', 'Latitude', 'Floor', 'Unit', 'Area', 'Year', 'WeekNumber' ] if not all(col in df.columns for col in required_columns): raise ValueError("Dataset is missing one or more required columns.") feature_names = ['District', 'Longitude', 'Latitude', 'Floor', 'Unit', 'Area', 'Year', 'WeekNumber'] X = df[feature_names] y = df['PriceInMillion'] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) rf_param_grid = { 'n_estimators': [50, 100, 150], 'max_depth': [4, 6, 8], 'max_features': ['sqrt', 'log2', 3], 'random_state': [42] } rf_grid = GridSearchCV(RandomForestRegressor(), rf_param_grid, refit=True, verbose=1, cv=5, error_score='raise') rf_grid.fit(X_train, y_train) model = rf_grid.best_estimator_ return model, feature_names @st.cache_data def predict_price(model, feature_names, new_data): new_data_df = pd.DataFrame([new_data], columns=feature_names) prediction = model.predict(new_data_df) return prediction[0] def main(): st.title("PROPERTY PRICE PREDICTION TOOL (Streamlit Version)") st.markdown("Predict the price of a new property based on District, Longitude, Latitude, Floor, Unit, Area, Year, and Week Number.") model, feature_names = load_and_train_model() district = st.selectbox("District (1 = Taikoo Shing, 2 = Mei Foo Sun Chuen, 3 = South Horizons, 4 = Whampoa Garden)", list(range(1, 9))) longitude = st.number_input("Longitude", value=114.200) latitude = st.number_input("Latitude", value=22.300) floor = st.selectbox("Floor", list(range(1, 71))) unit = st.selectbox("Unit (e.g., A=1, B=2, C=3, ...)", list(range(1, 31))) area = st.slider("Area (in sq. feet)", min_value=137, max_value=5000, value=300) year = st.selectbox("Year", [2024, 2025]) weeknumber = st.selectbox("Week Number", list(range(1, 53))) if st.button("Predict"): new_data = [district, longitude, latitude, floor, unit, area, year, weeknumber] prediction = predict_price(model, feature_names, new_data) st.success(f"🏠 Estimated Price: **${prediction:,.2f} Million**") if __name__ == "__main__": main()