from transformers import BertTokenizerFast,TFBertForSequenceClassification,TextClassificationPipeline import numpy as np import tensorflow as tf import gradio as gr model_path = "leadingbridge/sentiment-analysis" tokenizer = BertTokenizerFast.from_pretrained(model_path) model = TFBertForSequenceClassification.from_pretrained(model_path, id2label={0: 'negative', 1: 'positive'} ) def sentiment_analysis(text): pipe = TextClassificationPipeline(model=model, tokenizer=tokenizer) result = pipe(text) return result with gr.Blocks() as demo: gr.Markdown("Choose the Chinese NLP model you want to use.") with gr.Tab("Sentiment Analysis"): text_button = gr.Button("proceed") text_button.click(fn=sentiment_analysis,inputs=gr.Textbox(placeholder="Enter a positive or negative sentence here..."), outputs=gr.Textbox(label="Sentiment Analysis")) demo.launch()