import torch from torch import nn import gradio as gr class Generator(nn.Module): # Refer to the link below for explanations about nc, nz, and ngf # https://pytorch.org/tutorials/beginner/dcgan_faces_tutorial.html#inputs def __init__(self, nc=4, nz=100, ngf=64): super(Generator, self).__init__() self.network = nn.Sequential( nn.ConvTranspose2d(nz, ngf * 4, 3, 1, 0, bias=False), nn.BatchNorm2d(ngf * 4), nn.ReLU(True), nn.ConvTranspose2d(ngf * 4, ngf * 2, 3, 2, 1, bias=False), nn.BatchNorm2d(ngf * 2), nn.ReLU(True), nn.ConvTranspose2d(ngf * 2, ngf, 4, 2, 0, bias=False), nn.BatchNorm2d(ngf), nn.ReLU(True), nn.ConvTranspose2d(ngf, nc, 4, 2, 1, bias=False), nn.Tanh(), ) def forward(self, input): output = self.network(input) return output def predict(body, hair, top, bottom): name = str(body) + str(hair) + str(top) + str(bottom) return name gr.Interface( predict, inputs=[ gr.Radio(["human", "alien"]), gr.Slider(0, 5, label='Hair', step=1, default=0), gr.Slider(0, 3, label='Top', step=1, default=0), gr.Slider(0, 4, label='Bottom', step=1, default=0) ], outputs="image", live=True, ).launch()