[9:16 AM] Wacker, Aaron C import streamlit as st import pandas as pd  def generate_hospital_data():     # Generate hospital data     hospitals = {         "city": ["New York", "Los Angeles", "Chicago", "Houston", "Phoenix"],         "state": ["NY", "CA", "IL", "TX", "AZ"],         "bed_count": [1200, 1500, 1100, 1300, 1400],     }     df = pd.DataFrame(hospitals)     return df  def generate_state_data():     # Generate state data     states = {         "state": ["NY", "CA", "IL", "TX", "AZ"],         "population": [20000000, 40000000, 13000000, 29000000, 7000000],         "square_miles": [54556, 163696, 57914, 268596, 113990],     }     df = pd.DataFrame(states)     return df  def merge_datasets(hospitals_df, states_df):     # Merge hospital and state data     merged_df = pd.merge(hospitals_df, states_df, on="state")     return merged_df  def calculate_beds_per_capita(merged_df):     # Calculate beds per capita     merged_df["beds_per_capita"] = merged_df["bed_count"] / merged_df["population"]     return merged_df  def main():     # Generate data     hospitals_df = generate_hospital_data()     states_df = generate_state_data()     # Merge datasets     merged_df = merge_datasets(hospitals_df, states_df)     # Calculate beds per capita     merged_df = calculate_beds_per_capita(merged_df)     # Show merged and calculated data     st.write(merged_df)  if __name__ == "__main__":     main()