Spaces:
Sleeping
Sleeping
Update functions.py
Browse files- functions.py +112 -116
functions.py
CHANGED
@@ -1,116 +1,112 @@
|
|
1 |
-
import chardet
|
2 |
-
import torch
|
3 |
-
from langchain_openai import ChatOpenAI, OpenAI
|
4 |
-
from langchain_core.prompts import PromptTemplate
|
5 |
-
from langchain.prompts import PromptTemplate
|
6 |
-
from sentence_transformers import SentenceTransformer
|
7 |
-
import os
|
8 |
-
import pandas as pd
|
9 |
-
import json
|
10 |
-
|
11 |
-
current_dir = os.getcwd()
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
return
|
17 |
-
|
18 |
-
def
|
19 |
-
with open(
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
top_segments
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
"
|
55 |
-
"
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
resposta
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
file_set = set(file_name for file_name in file_names)
|
114 |
-
references = "\n".join("<a href='{}' target='_blank'>{}</a>".format(file_links[file_name], file_name) for file_name in file_set)
|
115 |
-
formatted_response = f"{resposta}\n\n----\n{references}"
|
116 |
-
return formatted_response
|
|
|
1 |
+
import chardet
|
2 |
+
import torch
|
3 |
+
from langchain_openai import ChatOpenAI, OpenAI
|
4 |
+
from langchain_core.prompts import PromptTemplate
|
5 |
+
from langchain.prompts import PromptTemplate
|
6 |
+
from sentence_transformers import SentenceTransformer
|
7 |
+
import os
|
8 |
+
import pandas as pd
|
9 |
+
import json
|
10 |
+
|
11 |
+
current_dir = os.getcwd()
|
12 |
+
api_key = os.getenv("OPENAI_API_KEY")
|
13 |
+
|
14 |
+
def load_dictionary(json_path):
|
15 |
+
with open(json_path, 'r', encoding='utf-8') as file:
|
16 |
+
return json.load(file)
|
17 |
+
|
18 |
+
def detect_encoding(file_path):
|
19 |
+
with open(file_path, 'rb') as file:
|
20 |
+
raw_data = file.read()
|
21 |
+
result = chardet.detect(raw_data)
|
22 |
+
return result['encoding']
|
23 |
+
|
24 |
+
def load_text(file_path):
|
25 |
+
encoding = detect_encoding(file_path)
|
26 |
+
with open(file_path, 'r', encoding=encoding) as file:
|
27 |
+
return file.read()
|
28 |
+
|
29 |
+
def search_query(query, embeddings_tensor, model, segment_contents, file_names, k=5):
|
30 |
+
query_embedding = torch.tensor(model.encode(query)).unsqueeze(0)
|
31 |
+
similarities = torch.mm(query_embedding, embeddings_tensor.t()).squeeze(0)
|
32 |
+
topk_similarities, topk_indices = torch.topk(similarities, k)
|
33 |
+
|
34 |
+
top_segments = [segment_contents[idx] for idx in topk_indices]
|
35 |
+
top_file_names = [file_names[idx] for idx in topk_indices]
|
36 |
+
top_similarities = topk_similarities.tolist()
|
37 |
+
|
38 |
+
return top_segments, top_file_names, top_similarities
|
39 |
+
|
40 |
+
def load_embeddings(file_path="embeddings/embeddings.xlsx"):
|
41 |
+
embeddings_df = pd.read_excel(os.path.join(current_dir, file_path))
|
42 |
+
embeddings = embeddings_df.iloc[:, :-3].values
|
43 |
+
segment_contents = embeddings_df['segment_content'].values
|
44 |
+
num_segment_contents = len(segment_contents)
|
45 |
+
num_documents = embeddings_df['file_name'].nunique()
|
46 |
+
file_names = embeddings_df['file_name'].values
|
47 |
+
model_name = embeddings_df['model_name'].values[0]
|
48 |
+
|
49 |
+
return {
|
50 |
+
"embeddings": embeddings,
|
51 |
+
"segment_contents": segment_contents,
|
52 |
+
"num_documents": num_documents,
|
53 |
+
"num_segment_contents": num_segment_contents,
|
54 |
+
"file_names": file_names,
|
55 |
+
"model_name": model_name,
|
56 |
+
}
|
57 |
+
|
58 |
+
def generate_answer_with_references(query, data):
|
59 |
+
embeddings = data["embeddings"]
|
60 |
+
segment_contents = data["segment_contents"]
|
61 |
+
model_name = data["model_name"]
|
62 |
+
file_names = data["file_names"]
|
63 |
+
embeddings_tensor = torch.tensor(embeddings, dtype=torch.float32)
|
64 |
+
model = SentenceTransformer(model_name)
|
65 |
+
dictionary_path = os.path.join(current_dir, 'documents_names.json')
|
66 |
+
file_name_dict = load_dictionary(dictionary_path)
|
67 |
+
file_names = [file_name_dict.get(name, name) for name in file_names]
|
68 |
+
|
69 |
+
top_segments, top_file_names, top_similarities = search_query(query, embeddings_tensor, model, segment_contents, file_names, k=5)
|
70 |
+
context = "\n----\n".join(top_segments)
|
71 |
+
prompt_template = """
|
72 |
+
Você é um assistente de inteligência artificial que responde a perguntas baseadas nos documentos de forma detalhada na forma culta da língua portuguesa.
|
73 |
+
Não é possível gerar informações ou fornecer informações que não estejam contidas nos documentos recuperados.
|
74 |
+
Se a informação não se encontra nos documentos, responda com: Não foi possível encontrar a informação requerida nos documentos.
|
75 |
+
|
76 |
+
Contexto:
|
77 |
+
|
78 |
+
{context}
|
79 |
+
|
80 |
+
Pergunta: {query}
|
81 |
+
|
82 |
+
Resposta:""".format(context=context, query=query)
|
83 |
+
|
84 |
+
qa_prompt = PromptTemplate.from_template(prompt_template)
|
85 |
+
api_key = load_api_key('api_key.json')
|
86 |
+
|
87 |
+
llm = ChatOpenAI(api_key=api_key, model="gpt-3.5-turbo")
|
88 |
+
response = llm.invoke(qa_prompt.template)
|
89 |
+
resposta = response.content
|
90 |
+
total_tokens = response.response_metadata['token_usage']['total_tokens']
|
91 |
+
prompt_tokens = response.response_metadata['token_usage']['prompt_tokens']
|
92 |
+
|
93 |
+
return resposta, total_tokens, prompt_tokens, top_segments, top_file_names, top_similarities, prompt_template
|
94 |
+
|
95 |
+
def rag_response(query, data, detailed_response):
|
96 |
+
resposta, total_tokens, prompt_tokens, top_segments, top_file_names, top_similarities, prompt_template = generate_answer_with_references(query, data)
|
97 |
+
file_names = [x[0] for x in top_file_names]
|
98 |
+
file_links = {x[0]: x[1] for x in top_file_names}
|
99 |
+
|
100 |
+
if detailed_response==True:
|
101 |
+
references_detail = "\n\n".join([
|
102 |
+
f"* Segmento: {segment}\nArquivo: <a href='{file_links[file_name]}' target='_blank'>{file_name}</a>\nSimilaridade: {similarity:.4f}"
|
103 |
+
for segment, file_name, similarity in zip(top_segments, file_names, top_similarities)])
|
104 |
+
|
105 |
+
formatted_detailed_response = f"Resposta:\n\n{resposta}\n\nPrompt:\n{prompt_template}\n\nPrompt Tokens: {prompt_tokens}\nTotal Tokens: {total_tokens}\n\n{references_detail}"
|
106 |
+
|
107 |
+
return formatted_detailed_response
|
108 |
+
else:
|
109 |
+
file_set = set(file_name for file_name in file_names)
|
110 |
+
references = "\n".join("<a href='{}' target='_blank'>{}</a>".format(file_links[file_name], file_name) for file_name in file_set)
|
111 |
+
formatted_response = f"{resposta}\n\n----\n{references}"
|
112 |
+
return formatted_response
|
|
|
|
|
|
|
|