# GraphaLogue Analyzer # Marco Kuhlmann import itertools import statistics import sys from graph import Graph from treewidth import quickbb class DepthFirstSearch(object): def __init__(self, graph, undirected=False): self._graph = graph self._undirected = undirected self._enter = dict() self._leave = dict() self.n_runs = 0 def compute_timestamps(node, timestamp): self._enter[node] = next(timestamp) for edge in self._graph.find_node(node).outgoing_edges: if not edge.tgt in self._enter: compute_timestamps(edge.tgt, timestamp) if self._undirected: for edge in self._graph.find_node(node).incoming_edges: if not edge.src in self._enter: compute_timestamps(edge.src, timestamp) self._leave[node] = next(timestamp) timestamp = itertools.count() for node in self._graph.nodes: if not node.id in self._enter: compute_timestamps(node.id, timestamp) self.n_runs += 1 def is_back_edge(self, edge): return \ self._enter[edge.tgt] < self._enter[edge.src] and \ self._leave[edge.src] < self._leave[edge.tgt] class InspectedGraph(object): def __init__(self, graph): self.graph = graph self.n_nodes = len(graph.nodes) self.dfs = DepthFirstSearch(graph) self.undirected_dfs = DepthFirstSearch(graph, undirected=True) def n_root_nodes(self): return sum(1 for node in self.graph.nodes if node.is_root()) def n_leaf_nodes(self): return sum(1 for node in self.graph.nodes if node.is_leaf()) def n_top_nodes(self): return sum(1 for node in self.graph.nodes if node.is_top()) def n_singleton_nodes(self): return sum(1 for node in self.graph.nodes if node.is_singleton()) def n_loops(self): return sum(1 for edge in self.graph.edges if edge.is_loop()) def n_components(self): return self.undirected_dfs.n_runs - self.n_singleton_nodes() def is_cyclic(self): for edge in self.graph.edges: if edge.is_loop() or self.dfs.is_back_edge(edge): return True return False def is_forest(self): if self.is_cyclic(): return False else: for node in self.graph.nodes: if len(node.incoming_edges) > 1: return False return True def is_tree(self): return self.is_forest() and self.n_components() == 1 def treewidth(self): n_nodes = len(self.graph.nodes) - self.n_singleton_nodes() if n_nodes <= 1: return 1 else: undirected_graph = {} for node in self.graph.nodes: if not node.is_singleton(): undirected_graph[node.id] = set() for edge in self.graph.edges: if not edge.is_loop(): undirected_graph[edge.src].add(edge.tgt) undirected_graph[edge.tgt].add(edge.src) decomposition = quickbb(undirected_graph) return max(1, max(len(u)-1 for u in decomposition)) def _crossing_pairs(self): def endpoints(edge): return (min(edge.src, edge.tgt), max(edge.src, edge.tgt)) for edge1 in self.graph.edges: min1, max1 = endpoints(edge1) for edge2 in self.graph.edges: min2, max2 = endpoints(edge2) if min1 < min2 and min2 < max1 and max1 < max2: yield (min1, max1), (min2, max2) def _crossing_edges(self): crossing_edges = set() for edge1, edge2 in self._crossing_pairs(): crossing_edges.add(edge1) crossing_edges.add(edge2) return crossing_edges def is_noncrossing(self): for _, _ in self._crossing_pairs(): return False return True def is_page2(self): crossing_graph = {u: set() for u in self._crossing_edges()} for edge1, edge2 in self._crossing_pairs(): crossing_graph[edge1].add(edge2) crossing_graph[edge2].add(edge1) # Tests whether the specified undirected graph is 2-colorable. colors = {} def inner(node, color1, color2): colors[node] = color1 for neighbour in crossing_graph[node]: if neighbour in colors: if colors[neighbour] == color1: return False else: inner(neighbour, color2, color1) return True for node in crossing_graph: if node not in colors: if not inner(node, 0, 1): return False return True def density(self): n_nodes = len(self.graph.nodes) - self.n_singleton_nodes() if n_nodes <= 1: return 1 else: n_edges = 0 for edge in self.graph.edges: if edge.src != edge.tgt: n_edges += 1 return n_edges / (n_nodes - 1) PROPERTY_COUNTER = itertools.count(1) def report(msg, val): print("(%02d)\t%s\t%s" % (next(PROPERTY_COUNTER), msg, val)) def analyze(graphs, ids=None): ordered = False n_graphs = 0 n_graphs_noncrossing = 0 n_graphs_has_top_node = 0 n_graphs_multirooted = 0 n_nodes = 0 n_nodes_with_reentrancies = 0 n_singletons = 0 n_top_nodes = 0 n_edges = 0 n_labels = 0; n_properties = 0; n_anchors = 0; n_attributes = 0; n_loops = 0 labels = set() non_functional_labels = set() n_cyclic = 0 n_connected = 0 n_forests = 0 n_trees = 0 n_graphs_page2 = 0 acc_treewidth = 0 n_roots_nontop = 0 acc_density = 0.0 max_treewidth = 0 acc_edge_length = 0 n_treewidth_one = 0 treewidths = [] for graph in graphs: if ids and not graph.id in ids: continue n_graphs += 1 n_nodes += len(graph.nodes) n_edges += len(graph.edges) for node in graph.nodes: if node.label is not None: n_labels += 1; if node.properties is not None and node.values is not None: n_properties += len(node.properties); if node.anchors is not None: n_anchors += 1; for edge in graph.edges: if edge.attributes is not None and edge.values is not None: n_attributes += len(edge.attributes); inspected_graph = InspectedGraph(graph) treewidth = inspected_graph.treewidth() n_trees += inspected_graph.is_tree() acc_density += inspected_graph.density() has_reentrancies = False has_top_node = False n_loops += inspected_graph.n_loops() for edge in graph.edges: if edge.lab is not None: labels.add(edge.lab) for node in graph.nodes: n_top_nodes += node.is_top if node.is_top: has_top_node = True n_singletons += node.is_singleton() if len(node.incoming_edges) > 1: n_nodes_with_reentrancies += 1 has_reentrancies = True outgoing_labels = set() for edge in node.outgoing_edges: if edge.lab in outgoing_labels: non_functional_labels.add(edge.lab) else: outgoing_labels.add(edge.lab) if not node.is_singleton() and node.is_root() and not node.is_top: n_roots_nontop += 1 n_cyclic += inspected_graph.is_cyclic() n_connected += inspected_graph.n_components() == 1 n_forests += inspected_graph.is_forest() acc_treewidth += treewidth max_treewidth = max(max_treewidth, treewidth) n_treewidth_one += treewidth == 1 treewidths.append(treewidth) if graph.flavor == 0: ordered = True n_graphs_noncrossing += inspected_graph.is_noncrossing() n_graphs_page2 += inspected_graph.is_page2() acc_edge_length += sum(edge.length() for edge in graph.edges) else: if ordered: print( "analyzer.py: cannot mix graphs of different flavors in one file; exit.", file=sys.stderr) sys.exit(1) n_graphs_has_top_node += has_top_node n_graphs_multirooted += inspected_graph.n_root_nodes() > 1 n_nonsingletons = n_nodes - n_singletons report("number of graphs", "%d" % n_graphs) report("number of nodes", "%d" % n_nodes) n_tuples = n_top_nodes + n_labels + n_properties + n_anchors + n_edges + n_attributes; if n_tuples > 0: report("number of tops (percentage)", "{:d} ({:.2f})".format(n_top_nodes, 100 * n_top_nodes / n_tuples)); report("number of node labels (percentage)", "{:d} ({:.2f})".format(n_labels, 100 * n_labels / n_tuples)); report("number of node properties (percentage)", "{:d} ({:.2f})".format(n_properties, 100 * n_properties / n_tuples)); report("number of node anchors (percentage)", "{:d} ({:.2f})".format(n_anchors, 100 * n_anchors / n_tuples)); report("number of edges (percentage)", "{:d} ({:.2f})".format(n_edges, 100 * n_edges / n_tuples)); report("number of edge attributes (percentage)", "{:d} ({:.2f})".format(n_attributes, 100 * n_attributes / n_tuples)); report("number of edge labels", "%d" % len(labels)) # report("\\percentnode\\ singleton", "%.2f" % (100 * n_singletons / n_nodes)) # report("\\percentnode\\ non-singleton", "%.2f" % (100 * n_nonsingletons / n_nodes)) report("\\percentgraph\\ trees", "%.2f" % (100 * n_trees / n_graphs)) report("\\percentgraph\\ treewidth one", "%.2f" % (100 * n_treewidth_one / n_graphs)) report("average treewidth", "%.3f" % (acc_treewidth / n_graphs)) # report("median treewidth", "%d" % statistics.median(treewidths)) report("maximal treewidth", "%d" % max_treewidth) # report("edge density", "%.3f" % (n_edges / n_nonsingletons)) report("average edge density", "%.3f" % (acc_density / n_graphs)) report("\\percentnode\\ reentrant", "%.2f" % (100 * n_nodes_with_reentrancies / n_nonsingletons)) # report("labels", " ".join(sorted(labels))) # report("functional labels", " ".join(sorted(labels - non_functional_labels))) # report("non-functional labels", " ".join(sorted(non_functional_labels))) # report("\\percentgraph\\ forests", "%.2f" % (100 * n_forests / n_graphs)) # report("number of top nodes", "%d" % n_top_nodes) report("\\percentgraph\\ cyclic", "%.2f" % (100 * n_cyclic / n_graphs)) # report("number of self-loops", "%d" % n_loops) report("\\percentgraph\\ not connected", "%.2f" % (100 * (n_graphs - n_connected) / n_graphs)) # report("\\percentgraph\\ without top", "%.2f" % (100 * (n_graphs - n_graphs_has_top_node) / n_graphs)) # report("average top nodes per graph", "%.3f" % (n_top_nodes / n_graphs)) report("\\percentgraph\\ multi-rooted", "%.2f" % (100 * n_graphs_multirooted / n_graphs)) report("percentage of non-top roots", "%.2f" % (100 * n_roots_nontop / n_nonsingletons)) if ordered: report("average edge length", "%.3f" % (acc_edge_length / n_edges)) report("\\percentgraph\\ noncrossing", "%.2f" % (100 * n_graphs_noncrossing / n_graphs)) report("\\percentgraph\\ pagenumber two", "%.2f" % (100 * n_graphs_page2 / n_graphs)) else: report("average edge length", "--") report("\\percentgraph\\ noncrossing", "--") report("\\percentgraph\\ pagenumber two", "--") def read_ids(file_name): ids = set() with open(file_name) as fp: for line in fp: ids.add(line.rstrip()) return ids def read_tokens(file_name): with open(file_name) as fp: for line in fp: yield line.split() def analyze_cmd(read_function, ordered=False): import sys ids = None tokens = None for arg in sys.argv[2:]: x, y = tuple(arg.split(':')) if x == 'ids': print("Reading whitelisted IDs from %s" % y, file=sys.stderr) ids = read_ids(y) if x == 'tokens': print("Reading tokens from %s" % y, file=sys.stderr) tokens = read_tokens(y) with open(sys.argv[1]) as fp: analyze(read_function(fp), ordered=ordered, ids=ids, tokens=tokens)