import ast import copy import functools import inspect import queue import sys import os import time import traceback import typing import warnings from datetime import datetime import requests from requests import ConnectTimeout, JSONDecodeError from urllib3.exceptions import ConnectTimeoutError, MaxRetryError, ConnectionError from requests.exceptions import ConnectionError as ConnectionError2 from requests.exceptions import ReadTimeout as ReadTimeout2 if os.path.dirname(os.path.abspath(__file__)) not in sys.path: sys.path.append(os.path.dirname(os.path.abspath(__file__))) os.environ['HF_HUB_DISABLE_TELEMETRY'] = '1' os.environ['BITSANDBYTES_NOWELCOME'] = '1' warnings.filterwarnings('ignore', category=UserWarning, message='TypedStorage is deprecated') # more is not useful typically, don't let these go beyond limits and eat up resources max_cores = max(1, os.cpu_count() // 2) if os.getenv('NUMEXPR_MAX_THREADS') is None: os.environ['NUMEXPR_MAX_THREADS'] = str(min(8, max_cores)) if os.getenv('NUMEXPR_NUM_THREADS') is None: os.environ['NUMEXPR_NUM_THREADS'] = str(min(8, max_cores)) if os.getenv('OMP_NUM_THREADS') is None: os.environ['OMP_NUM_THREADS'] = str(min(8, max_cores)) if os.getenv('OPENBLAS_NUM_THREADS') is None: os.environ['OPENBLAS_NUM_THREADS'] = str(min(8, max_cores)) if os.getenv('DUCKDB_NUM_THREADS') is None: os.environ['DUCKDB_NUM_THREADS'] = str(min(4, max_cores)) if os.getenv('RAYON_RS_NUM_CPUS') is None: os.environ['RAYON_RS_NUM_CPUS'] = str(min(8, max_cores)) if os.getenv('RAYON_NUM_THREADS') is None: os.environ['RAYON_NUM_THREADS'] = str(min(8, max_cores)) import numpy as np from evaluate_params import eval_func_param_names, no_default_param_names, input_args_list from enums import DocumentSubset, LangChainMode, no_lora_str, model_token_mapping, no_model_str, \ LangChainAction, LangChainAgent, DocumentChoice, LangChainTypes, super_source_prefix, \ super_source_postfix, t5_type, get_langchain_prompts, gr_to_lg, invalid_key_msg from loaders import get_loaders from utils import set_seed, clear_torch_cache, NullContext, wrapped_partial, EThread, get_githash, \ import_matplotlib, get_device, makedirs, get_kwargs, start_faulthandler, get_hf_server, FakeTokenizer, \ have_langchain, set_openai, cuda_vis_check, H2O_Fire, lg_to_gr, str_to_list, str_to_dict, get_token_count start_faulthandler() import_matplotlib() SEED = 1236 set_seed(SEED) from typing import Union import torch from transformers import GenerationConfig, AutoModel, TextIteratorStreamer from prompter import Prompter, inv_prompt_type_to_model_lower, non_hf_types, PromptType, get_prompt, generate_prompt from stopping import get_stopping langchain_actions = [x.value for x in list(LangChainAction)] langchain_agents_list = [x.value for x in list(LangChainAgent)] def main( load_8bit: bool = False, load_4bit: bool = False, low_bit_mode: int = 1, load_half: bool = None, load_gptq: str = '', load_exllama: bool = False, use_safetensors: bool = False, revision: str = None, use_gpu_id: bool = True, base_model: str = '', tokenizer_base_model: str = '', lora_weights: str = "", gpu_id: int = 0, compile_model: bool = None, use_cache: bool = None, inference_server: str = "", prompt_type: Union[int, str] = None, prompt_dict: typing.Dict = None, system_prompt: str = '', # llama and gpt4all settings llamacpp_dict: typing.Dict = dict(n_gpu_layers=100, use_mlock=True, n_batch=1024, n_gqa=0), model_path_llama: str = 'https://huggingface.co/TheBloke/Llama-2-7B-Chat-GGML/resolve/main/llama-2-7b-chat.ggmlv3.q8_0.bin', # 'llama-2-7b-chat.ggmlv3.q8_0.bin', model_name_gptj: str = 'ggml-gpt4all-j-v1.3-groovy.bin', model_name_gpt4all_llama: str = 'ggml-wizardLM-7B.q4_2.bin', model_name_exllama_if_no_config: str = 'TheBloke/Nous-Hermes-Llama2-GPTQ', model_lock: typing.List[typing.Dict[str, str]] = None, model_lock_columns: int = None, fail_if_cannot_connect: bool = False, # input to generation temperature: float = None, top_p: float = None, top_k: int = None, num_beams: int = None, repetition_penalty: float = None, num_return_sequences: int = None, do_sample: bool = None, max_new_tokens: int = None, min_new_tokens: int = None, early_stopping: Union[bool, str] = None, max_time: float = None, memory_restriction_level: int = None, debug: bool = False, save_dir: str = None, share: bool = False, local_files_only: bool = False, resume_download: bool = True, use_auth_token: Union[str, bool] = False, trust_remote_code: Union[str, bool] = True, rope_scaling: dict = None, max_seq_len: int = None, offload_folder: str = "offline_folder", src_lang: str = "English", tgt_lang: str = "Russian", prepare_offline_level: int = 0, cli: bool = False, cli_loop: bool = True, gradio: bool = True, gradio_offline_level: int = 0, server_name: str = "0.0.0.0", root_path: str = "", chat: bool = True, chat_conversation: typing.List[typing.Tuple[str, str]] = None, text_context_list: typing.List[str] = None, stream_output: bool = True, async_output: bool = True, num_async: int = 3, show_examples: bool = None, verbose: bool = False, h2ocolors: bool = True, dark: bool = False, # light tends to be best height: int = 600, show_lora: bool = True, show_llama: bool = True, show_gpt4all: bool = False, login_mode_if_model0: bool = False, block_gradio_exit: bool = True, concurrency_count: int = 1, api_open: bool = False, allow_api: bool = True, input_lines: int = 1, gradio_size: str = None, show_copy_button: bool = True, large_file_count_mode: bool = False, pre_load_embedding_model: bool = True, auth: Union[typing.List[typing.Tuple[str, str]], str] = None, auth_filename: str = None, auth_access: str = 'open', auth_freeze: bool = False, auth_message: str = None, guest_name: str = "guest", enforce_h2ogpt_api_key: bool = None, h2ogpt_api_keys: Union[list, str] = [], h2ogpt_key: str = None, max_max_time=None, max_max_new_tokens=None, visible_models: list = None, visible_visible_models: bool = True, visible_submit_buttons: bool = True, visible_side_bar: bool = True, visible_doc_track: bool = True, visible_chat_tab: bool = True, visible_doc_selection_tab: bool = True, visible_doc_view_tab: bool = True, visible_chat_history_tab: bool = True, visible_expert_tab: bool = True, visible_models_tab: bool = True, visible_system_tab: bool = True, visible_tos_tab: bool = False, visible_login_tab: bool = True, visible_hosts_tab: bool = False, chat_tables: bool = False, visible_h2ogpt_header: bool = True, max_raw_chunks: int = None, sanitize_user_prompt: bool = False, sanitize_bot_response: bool = False, extra_model_options: typing.List[str] = [], extra_lora_options: typing.List[str] = [], extra_server_options: typing.List[str] = [], score_model: str = 'auto', eval_filename: str = None, eval_prompts_only_num: int = 0, eval_prompts_only_seed: int = 1234, eval_as_output: bool = False, langchain_mode: str = None, user_path: str = None, langchain_modes: list = [LangChainMode.USER_DATA.value, LangChainMode.MY_DATA.value, LangChainMode.LLM.value, LangChainMode.DISABLED.value], langchain_mode_paths: dict = {LangChainMode.USER_DATA.value: None}, langchain_mode_types: dict = {LangChainMode.USER_DATA.value: LangChainTypes.SHARED.value}, detect_user_path_changes_every_query: bool = False, langchain_action: str = LangChainAction.QUERY.value, langchain_agents: list = [], force_langchain_evaluate: bool = False, visible_langchain_actions: list = [LangChainAction.QUERY.value, LangChainAction.SUMMARIZE_MAP.value], visible_langchain_agents: list = langchain_agents_list.copy(), document_subset: str = DocumentSubset.Relevant.name, document_choice: list = [DocumentChoice.ALL.value], use_llm_if_no_docs: bool = True, load_db_if_exists: bool = True, keep_sources_in_context: bool = False, db_type: str = 'chroma', use_openai_embedding: bool = False, use_openai_model: bool = False, hf_embedding_model: str = None, migrate_embedding_model: str = False, auto_migrate_db: bool = False, cut_distance: float = 1.64, answer_with_sources: bool = True, append_sources_to_answer: bool = True, show_accordions: bool = True, top_k_docs_max_show: int = 10, show_link_in_sources: bool = True, pre_prompt_query: str = None, prompt_query: str = None, pre_prompt_summary: str = None, prompt_summary: str = None, add_chat_history_to_context: bool = True, add_search_to_context: bool = False, context: str = '', iinput: str = '', allow_upload_to_user_data: bool = True, reload_langchain_state: bool = True, allow_upload_to_my_data: bool = True, enable_url_upload: bool = True, enable_text_upload: bool = True, enable_sources_list: bool = True, chunk: bool = True, chunk_size: int = 512, top_k_docs: int = None, docs_ordering_type: str = 'reverse_ucurve_sort', min_max_new_tokens=256, auto_reduce_chunks: bool = True, max_chunks: int = 100, headsize: int = 50, n_jobs: int = -1, # urls use_unstructured=True, use_playwright=False, use_selenium=False, # pdfs use_pymupdf='auto', use_unstructured_pdf='auto', use_pypdf='auto', enable_pdf_ocr='auto', enable_pdf_doctr='auto', try_pdf_as_html='auto', # images enable_ocr=False, enable_doctr=False, enable_pix2struct=False, enable_captions=True, pre_load_caption_model: bool = False, caption_gpu: bool = True, captions_model: str = "Salesforce/blip-image-captioning-base", doctr_gpu: bool = True, # json jq_schema='.[]', max_quality: bool = False, enable_heap_analytics: bool = True, heap_app_id: str = "1680123994", ): """ :param load_8bit: load model in 8-bit using bitsandbytes :param load_4bit: load model in 4-bit using bitsandbytes :param low_bit_mode: 0: no quantization config 1: change compute 2: nf4 3: double quant 4: 2 and 3 See: https://huggingface.co/docs/transformers/main_classes/quantization If using older bitsandbytes or transformers, 0 is required :param load_half: load model in float16 (None means auto, which means True unless t5 based model) otherwise specify bool :param load_gptq: to load model with GPTQ, put model_basename here, e.g. gptq_model-4bit--1g :param load_exllama: whether to use exllama (only applicable to LLaMa1/2 models with 16-bit or GPTQ :param use_safetensors: to use safetensors version (assumes file/HF points to safe tensors version) :param revision: Which HF revision to use :param use_gpu_id: whether to control devices with gpu_id. If False, then spread across GPUs :param base_model: model HF-type name. If use --base_model to preload model, cannot unload in gradio in models tab :param tokenizer_base_model: tokenizer HF-type name. Usually not required, inferred from base_model. :param lora_weights: LORA weights path/HF link :param gpu_id: if use_gpu_id, then use gpu_id for cuda device ID, or auto mode if gpu_id != -1 :param compile_model Whether to compile the model :param use_cache: Whether to use caching in model (some models fail when multiple threads use) :param inference_server: Consume base_model as type of model at this address Address can be text-generation-server hosting that base_model e.g. python generate.py --inference_server="http://192.168.1.46:6112" --base_model=h2oai/h2ogpt-oasst1-512-12b Or Address can be "openai_chat" or "openai" for OpenAI API Or Address can be "openai_azure_chat" or "openai_azure" for Azure OpenAI API e.g. python generate.py --inference_server="openai_chat" --base_model=gpt-3.5-turbo e.g. python generate.py --inference_server="openai" --base_model=text-davinci-003 e.g. python generate.py --inference_server="openai_azure_chat::::" --base_model=gpt-3.5-turbo e.g. python generate.py --inference_server="openai_azure::::" --base_model=text-davinci-003 Optionals (Replace with None or just leave empty but keep :) of some deployment name : e.g. ".openai.azure.com" for some without https:// of some api, e.g. 2023-05-15 e.g. 0613 Or Address can be for vLLM: Use: "vllm:IP:port" for OpenAI-compliant vLLM endpoint Note: vllm_chat not supported by vLLM project. Or Address can be replicate: Use: --inference_server=replicate: will use a Replicate server, requiring a Replicate key. e.g. looks like "a16z-infra/llama13b-v2-chat:df7690f1994d94e96ad9d568eac121aecf50684a0b0963b25a41cc40061269e5" Or Address can be for AWS SageMaker: Use: "sagemaker_chat:" for chat models that AWS sets up as dialog Use: "sagemaker:" for foundation models that AWS only text as inputs :param prompt_type: type of prompt, usually matched to fine-tuned model or plain for foundational model :param prompt_dict: If prompt_type=custom, then expects (some) items returned by get_prompt(..., return_dict=True) :param system_prompt: Universal system prompt to use if model supports, like LLaMa2, regardless of prompt_type definition. Useful for langchain case to control behavior, or OpenAI and Replicate. If None, 'None', or 'auto', then for LLaMa or other models that internally have system_prompt, will use default for each model If '', then no system prompt (no empty template given to model either, just no system part added at all) If some string not in ['None', 'auto'], then use that as system prompt Default is '', no system_prompt, because often it hurts performance/accuracy :param llamacpp_dict: n_gpu_layers: for llama.cpp based models, number of GPU layers to offload (default is all by using large value) use_mlock: when using `llama.cpp` based CPU models, for computers with low system RAM or slow CPUs, recommended False n_batch: Can make smaller to 128 for slower low-memory CPU systems n_gqa: Required to be 8 for LLaMa 70B ... etc. anything that could be passed to llama.cpp or GPT4All models e.g. python generate.py --base_model='llama' --prompt_type=llama2 --score_model=None --langchain_mode='UserData' --user_path=user_path --llamacpp_dict="{'n_gpu_layers':25,'n_batch':128}" :param model_path_llama: model path or URL (for auto-download) :param model_name_gptj: model path or URL (for auto-download) :param model_name_gpt4all_llama: model path or URL (for auto-download) :param model_name_exllama_if_no_config: exllama model's full path for model, tokenizer, generator for use when no HuggingFace config :param model_lock: Lock models to specific combinations, for ease of use and extending to many models Only used if gradio = True List of dicts, each dict has base_model, tokenizer_base_model, lora_weights, inference_server, prompt_type, and prompt_dict If all models have same prompt_type, and prompt_dict, can still specify that once in CLI outside model_lock as default for dict Can specify model_lock instead of those items on CLI As with CLI itself, base_model can infer prompt_type and prompt_dict if in prompter.py. Also, tokenizer_base_model and lora_weights are optional. Also, inference_server is optional if loading model from local system. All models provided will automatically appear in compare model mode Model loading-unloading and related choices will be disabled. Model/lora/server adding will be disabled :param model_lock_columns: How many columns to show if locking models (and so showing all at once) If None, then defaults to up to 3 if -1, then all goes into 1 row Maximum value is 4 due to non-dynamic gradio rendering elements :param fail_if_cannot_connect: if doing model locking (e.g. with many models), fail if True. Otherwise ignore. Useful when many endpoints and want to just see what works, but still have to wait for timeout. :param temperature: generation temperature :param top_p: generation top_p :param top_k: generation top_k :param num_beams: generation number of beams :param repetition_penalty: generation repetition penalty :param num_return_sequences: generation number of sequences (1 forced for chat) :param do_sample: generation sample :param max_new_tokens: generation max new tokens :param min_new_tokens: generation min tokens :param early_stopping: generation early stopping :param max_time: maximum time to allow for generation :param memory_restriction_level: 0 = no restriction to tokens or model, 1 = some restrictions on token 2 = HF like restriction 3 = very low memory case :param debug: enable debug mode :param save_dir: directory chat data is saved to :param share: whether to share the gradio app with sharable URL :param local_files_only: whether to only use local files instead of doing to HF for models :param resume_download: whether to resume downloads from HF for models :param use_auth_token: whether to use HF auth token (requires CLI did huggingface-cli login before) :param trust_remote_code: whether to use trust any code needed for HF model :param rope_scaling: For HF transformers model: scaling for rope-based models, e.g. --rope_scaling="{'type':'dynamic', 'factor':4}" For exllama model: --rope_scaling="{'alpha_value':4}" . This automatically scales max_seq_len for exllama :param max_seq_len: Manually set maximum sequence length for the LLM :param offload_folder: path for spilling model onto disk :param src_lang: source languages to include if doing translation (None = all) :param tgt_lang: target languages to include if doing translation (None = all) :param prepare_offline_level: Whether to just prepare for offline use, do not go into cli, eval, or gradio run modes 0 : no prep 1: prepare just h2oGPT with exact same setup as passed to CLI and ensure all artifacts for h2oGPT alone added to ~/.cache/ 2: prepare h2oGPT + all inference servers so h2oGPT+inference servers can use the ~/.cache/ :param cli: whether to use CLI (non-gradio) interface. :param cli_loop: whether to loop for CLI (False usually only for testing) :param gradio: whether to enable gradio, or to enable benchmark mode :param gradio_offline_level: > 0, then change fonts so full offline == 1 means backend won't need internet for fonts, but front-end UI might if font not cached == 2 means backend and frontend don't need internet to download any fonts. Note: Some things always disabled include HF telemetry, gradio telemetry, chromadb posthog that involve uploading. This option further disables google fonts for downloading, which is less intrusive than uploading, but still required in air-gapped case. The fonts don't look as nice as google fonts, but ensure full offline behavior. Also set --share=False to avoid sharing a gradio live link. :param server_name: IP to use. In linux 0.0.0.0 is good choice so exposed to outside host, else for only local use 127.0.0.1. For windows/MAC 0.0.0.0 or 127.0.0.1 will work, but may need to specify actual LAN IP address for other LAN clients to see. :param root_path: The root path (or "mount point") of the application, if it's not served from the root ("/") of the domain. Often used when the application is behind a reverse proxy that forwards requests to the application. For example, if the application is served at "https://example.com/myapp", the `root_path` should be set to "/myapp". :param chat: whether to enable chat mode with chat history :param chat_conversation: list of tuples of (human, bot) conversation pre-appended to existing chat when using instruct/chat models Requires also add_chat_history_to_context = True It does *not* require chat=True, so works with nochat_api etc. :param text_context_list: List of strings to add to context for non-database version of document Q/A for faster handling via API etc. Forces LangChain code path and uses as many entries in list as possible given max_seq_len, with first assumed to be most relevant and to go near prompt. :param stream_output: whether to stream output :param async_output: Whether to do asyncio handling For summarization Applicable to HF TGI server Only if stream_output=False in CLI, UI, or API :param num_async: Number of simultaneously allowed asyncio calls to make for async_output Too many will overload inference server, too few will be too slow :param show_examples: whether to show clickable examples in gradio :param verbose: whether to show verbose prints :param h2ocolors: whether to use H2O.ai theme :param dark: whether to use dark mode for UI by default (still controlled in UI) :param height: height of chat window :param show_lora: whether to show LORA options in UI (expert so can be hard to understand) :param show_llama: whether to show LLaMa.cpp/GPT4All options in UI (only likely useful if have weak GPUs) :param show_gpt4all: whether to show GPT4All models in UI (not often useful, llama.cpp models best) :param login_mode_if_model0: set to True to load --base_model after client logs in, to be able to free GPU memory when model is swapped :param block_gradio_exit: whether to block gradio exit (used for testing) :param concurrency_count: gradio concurrency count (1 is optimal for LLMs) :param api_open: If False, don't let API calls skip gradio queue :param allow_api: whether to allow API calls at all to gradio server :param input_lines: how many input lines to show for chat box (>1 forces shift-enter for submit, else enter is submit) :param gradio_size: Overall size of text and spaces: "xsmall", "small", "medium", "large". Small useful for many chatbots in model_lock mode :param show_copy_button: Whether to show copy button for chatbots :param large_file_count_mode: Whether to force manual update to UI of drop-downs, good idea if millions of chunks or documents :param pre_load_embedding_model: Whether to preload embedding model for shared use across DBs and users (multi-thread safe only) :param auth: gradio auth for launcher in form [(user1, pass1), (user2, pass2), ...] e.g. --auth=[('jon','password')] with no spaces e.g. --auth="[('jon', 'password)())(')]" so any special characters can be used e.g. --auth=auth.json to specify persisted state file with name auth.json (auth_filename then not required) e.g. --auth='' will use default auth.json as file name for persisted state file (auth_filename then not required) e.g. --auth=None will use no auth, but still keep track of auth state, just not from logins :param auth_filename: Set auth filename, used only if --auth= was passed list of user/passwords :param auth_access: 'open': Allow new users to be added 'closed': Stick to existing users :param auth_freeze: whether freeze authentication based upon current file, no longer update file :param auth_message: Message to show if having users login, fixed if passed, else dynamic internally :param guest_name: guess name if using auth and have open access. If '', then no guest allowed even if open access, then all databases for each user always persisted :param enforce_h2ogpt_api_key: Whether to enforce h2oGPT token usage for API :param h2ogpt_api_keys: list of tokens allowed for API access or file accessed on demand for json of list of keys :param h2ogpt_key: E.g. can be set when accessing gradio h2oGPT server from local gradio h2oGPT server that acts as client to that inference server :param max_max_time: Maximum max_time for gradio slider :param max_max_new_tokens: Maximum max_new_tokens for gradio slider :param min_max_new_tokens: Minimum of max_new_tokens, when auto-scaling down to handle more docs/prompt, but still let generation have some tokens :param visible_models: Which models in model_lock list to show by default Takes integers of position in model_lock (model_states) list or strings of base_model names Ignored if model_lock not used For nochat API, this is single item within a list for model by name or by index in model_lock If None, then just use first model in model_lock list If model_lock not set, use model selected by CLI --base_model etc. :param visible_visible_models: Whether visible models drop-down is visible in UI :param visible_submit_buttons: whether submit buttons are visible when UI first comes up :param visible_side_bar: whether left side bar is visible when UI first comes up :param visible_doc_track: whether left side bar's document tracking is visible when UI first comes up :param visible_chat_tab: "" for chat tab :param visible_doc_selection_tab: "" for doc selection tab :param visible_doc_view_tab: "" for doc view tab :param visible_chat_history_tab: "" for chat history tab :param visible_expert_tab: "" for expert tab :param visible_models_tab: "" for models tab :param visible_system_tab: "" for system tab :param visible_tos_tab: "" for ToS tab :param visible_login_tab: "" for Login tab :param visible_hosts_tab: "" for hosts tab :param chat_tables: Just show Chat as block without tab (useful if want only chat view) :param visible_h2ogpt_header: Whether github stars, URL, logo, and QR code are visible :param max_raw_chunks: Maximum number of chunks to show in UI when asking for raw DB text from documents/collection :param sanitize_user_prompt: whether to remove profanity from user input (slows down input processing) Requires optional packages: pip install alt-profanity-check==1.2.2 better-profanity==0.7.0 :param sanitize_bot_response: whether to remove profanity and repeat lines from bot output (about 2x slower generation for long streaming cases due to better_profanity being slow) :param extra_model_options: extra models to show in list in gradio :param extra_lora_options: extra LORA to show in list in gradio :param extra_server_options: extra servers to show in list in gradio :param score_model: which model to score responses None: no response scoring 'auto': auto mode, '' (no model) for CPU or 1 GPU, 'OpenAssistant/reward-model-deberta-v3-large-v2' for >=2 GPUs, because on CPU takes too much compute just for scoring response :param eval_filename: json file to use for evaluation, if None is sharegpt :param eval_prompts_only_num: for no gradio benchmark, if using eval_filename prompts for eval instead of examples :param eval_prompts_only_seed: for no gradio benchmark, seed for eval_filename sampling :param eval_as_output: for no gradio benchmark, whether to test eval_filename output itself :param langchain_mode: Data source to include. Choose "UserData" to only consume files from make_db.py. None: auto mode, check if langchain package exists, at least do LLM if so, else Disabled If not passed, then chosen to be first langchain_modes, else langchain_mode->Disabled is set if no langchain_modes either WARNING: wiki_full requires extra data processing via read_wiki_full.py and requires really good workstation to generate db, unless already present. :param user_path: user path to glob from to generate db for vector search, for 'UserData' langchain mode. If already have db, any new/changed files are added automatically if path set, does not have to be same path used for prior db sources :param langchain_modes: dbs to generate at launch to be ready for LLM Apart from additional user-defined collections, can include ['wiki', 'wiki_full', 'UserData', 'MyData', 'github h2oGPT', 'DriverlessAI docs'] But wiki_full is expensive and requires preparation To allow personal space only live in session, add 'MyData' to list Default: If only want to consume local files, e.g. prepared by make_db.py, only include ['UserData'] If have own user modes, need to add these here or add in UI. :param langchain_mode_paths: dict of langchain_mode keys and disk path values to use for source of documents E.g. "{'UserData2': 'userpath2'}" A disk path be None, e.g. --langchain_mode_paths="{'UserData2': None}" even if existing DB, to avoid new documents being added from that path, source links that are on disk still work. If `--user_path` was passed, that path is used for 'UserData' instead of the value in this dict :param langchain_mode_types: dict of langchain_mode keys and database types E.g. python generate.py --base_model=llama --langchain_modes=['TestData'] --langchain_mode_types="{'TestData':'shared'}" The type is attempted to be inferred if directory already exists, then don't have to pass this :param detect_user_path_changes_every_query: whether to detect if any files changed or added every similarity search (by file hashes). Expensive for large number of files, so not done by default. By default only detect changes during db loading. :param langchain_action: Mode langchain operations in on documents. Query: Make query of document(s) Summarize or Summarize_map_reduce: Summarize document(s) via map_reduce Summarize_all: Summarize document(s) using entire document at once Summarize_refine: Summarize document(s) using entire document, and try to refine before returning summary :param langchain_agents: Which agents to use 'search': Use Web Search as context for LLM response, e.g. SERP if have SERPAPI_API_KEY in env :param force_langchain_evaluate: Whether to force langchain LLM use even if not doing langchain, mostly for testing. :param visible_langchain_actions: Which actions to allow :param visible_langchain_agents: Which agents to allow :param document_subset: Default document choice when taking subset of collection :param document_choice: Chosen document(s) by internal name, 'All' means use all docs :param use_llm_if_no_docs: Whether to use LLM even if no documents, when langchain_mode=UserData or MyData or custom :param load_db_if_exists: Whether to load chroma db if exists or re-generate db :param keep_sources_in_context: Whether to keep url sources in context, not helpful usually :param db_type: 'faiss' for in-memory 'chroma' (for chroma >= 0.4) 'chroma_old' (for chroma < 0.4) -- recommended for large collections 'weaviate' for persisted on disk :param use_openai_embedding: Whether to use OpenAI embeddings for vector db :param use_openai_model: Whether to use OpenAI model for use with vector db :param hf_embedding_model: Which HF embedding model to use for vector db Default is instructor-large with 768 parameters per embedding if have GPUs, else all-MiniLM-L6-v2 if no GPUs Can also choose simpler model with 384 parameters per embedding: "sentence-transformers/all-MiniLM-L6-v2" Can also choose even better embedding with 1024 parameters: 'hkunlp/instructor-xl' We support automatically changing of embeddings for chroma, with a backup of db made if this is done :param migrate_embedding_model: whether to use hf_embedding_model embedding even if database already had an embedding set. used to migrate all embeddings to a new one, but will take time to re-embed. Default (False) is to use the prior embedding for existing databases, and only use hf_embedding_model for new databases If had old database without embedding saved, then hf_embedding_model is also used. :param auto_migrate_db: whether to automatically migrate any chroma<0.4 database from duckdb -> sqlite version :param cut_distance: Distance to cut off references with larger distances when showing references. 1.64 is good to avoid dropping references for all-MiniLM-L6-v2, but instructor-large will always show excessive references. For all-MiniLM-L6-v2, a value of 1.5 can push out even more references, or a large value of 100 can avoid any loss of references. :param answer_with_sources: Whether to determine (and return) sources :param append_sources_to_answer: Whether to place source information in chat response (ignored by LLM). Always disabled for API. :param show_accordions: whether to show accordion for document references in chatbot UI :param top_k_docs_max_show: Max number of docs to show in UI for sources If web search is enabled, then this is modified to be max(top_k_docs_max_show, number of links used in search) :param show_link_in_sources: Whether to show URL link to source document in references :param pre_prompt_query: prompt before documents to query, if None then use internal defaults :param prompt_query: prompt after documents to query, if None then use internal defaults :param pre_prompt_summary: prompt before documents to summarize, if None then use internal defaults :param prompt_summary: prompt after documents to summarize, if None then use internal defaults For summarize, normal to have empty query (nothing added in ask anything in UI or empty string in API) If pass query, template is "Focusing on %s, %s" % (query, prompt_summary) If pass query and iinput, template is "Focusing on %s, %s, %s" % (query, iinput, prompt_summary) :param add_chat_history_to_context: Include chat context when performing action Not supported yet for openai_chat when using document collection instead of LLM Also not supported when using CLI mode :param add_search_to_context: Include web search in context as augmented prompt :param context: Default context to use (for system pre-context in gradio UI) context comes before chat_conversation and any document Q/A from text_context_list :param iinput: Default input for instruction-based prompts :param allow_upload_to_user_data: Whether to allow file uploads to update shared vector db (UserData or custom user dbs) Ensure pass user_path for the files uploaded to be moved to this location for linking. :param reload_langchain_state: Whether to reload langchain_modes.pkl file that contains any new user collections. :param allow_upload_to_my_data: Whether to allow file uploads to update personal vector db :param enable_url_upload: Whether to allow upload from URL :param enable_text_upload: Whether to allow upload of text :param enable_sources_list: Whether to allow list (or download for non-shared db) of list of sources for chosen db :param chunk: Whether to chunk data (True unless know data is already optimally chunked) :param chunk_size: Size of chunks, with typically top-4 passed to LLM, so needs to be in context length :param top_k_docs: For langchain_action query: number of chunks to give LLM -1 : auto-fills context up to max_seq_len For langchain_action summarize: number of document parts, like pages for PDF. There's no such thing as chunks for summarization. -1 : auto-fills context up to max_seq_len :param docs_ordering_type: Type of ordering of docs. 'best_first': Order by score so score is worst match near prompt 'best_near_prompt' or 'reverse_sort' : reverse docs order so most relevant is closest to question. Best choice for sufficiently smart model, and truncation occurs for oldest context, so best then too. But smaller 6_9 models fail to use newest context and can get stuck on old information. '' or None (i.e. default) or 'reverse_ucurve_sort' : Sort so most relevant is either near start or near end Best to avoid "lost in middle" as well as avoid hallucinating off starting content that LLM focuses on alot. :param auto_reduce_chunks: Whether to automatically reduce top_k_docs to fit context given prompt :param max_chunks: If top_k_docs=-1, maximum number of chunks to allow :param headsize: Maximum number of characters for head of document document for UI to show :param n_jobs: Number of processors to use when consuming documents (-1 = all, is default) :param use_unstructured: Enable unstructured URL loader :param use_playwright: Enable PlayWright URL loader :param use_selenium: Enable Selenium URL loader :param use_pymupdf: enable PyMUPDF 'auto' means use first, use others if they are 'auto' if no result :param use_unstructured_pdf: enable Unstructured PDF loader, 'auto' means use if pymupdf fails to get doc result :param use_pypdf: enable PyPDF loader 'auto' means use if unstructured fails to get doc result :param enable_pdf_ocr: 'auto' means only use OCR if normal text extraction fails. Useful for pure image-based PDFs with text. if enable_pdf_doctr == 'on' then don't do. 'on' means always do OCR as additional parsing of same documents 'off' means don't do OCR (e.g. because it's slow even if 'auto' only would trigger if nothing else worked) :param enable_pdf_doctr: Whether to support doctr on pdfs, 'auto' means use do if failed to get doc result so far :param try_pdf_as_html: Try "PDF" as if HTML file, in case web link has .pdf extension but really is just HTML :param enable_ocr: Whether to support OCR on images :param enable_doctr: Whether to support doctr on images (using OCR better than enable_ocr=True) :param enable_pix2struct: Whether to support pix2struct on images for captions :param enable_captions: Whether to support captions using BLIP for image files as documents, then preloads that model if pre_load_caption_model=True :param pre_load_caption_model: Whether to preload caption model, or load after forking parallel doc loader parallel loading disabled if preload and have images, to prevent deadlocking on cuda context Recommended if using larger caption model :param captions_model: Which model to use for captions. captions_model: str = "Salesforce/blip-image-captioning-base", # continue capable captions_model: str = "Salesforce/blip2-flan-t5-xl", # question/answer capable, 16GB state captions_model: str = "Salesforce/blip2-flan-t5-xxl", # question/answer capable, 60GB state Note: opt-based blip2 are not permissive license due to opt and Meta license restrictions Disabled for CPU since BLIP requires CUDA :param caption_gpu: If support caption, then use GPU if exists :param doctr_gpu: If support doctr, then use GPU if exists :param jq_schema: control json loader By default '.[]' ingests everything in brute-force way, but better to match your schema See: https://python.langchain.com/docs/modules/data_connection/document_loaders/json#using-jsonloader :param max_quality: Choose maximum quality ingestion with all available parsers Pro: Catches document when some default parsers would fail Pro: Enables DocTR that has much better OCR than Tesseract Con: Fills DB with results from all parsers, so similarity search gives redundant results :param enable_heap_analytics: Toggle telemetry. :param heap_app_id: App ID for Heap, change to your ID. :return: """ if base_model is None: base_model = '' if tokenizer_base_model is None: tokenizer_base_model = '' if lora_weights is None: lora_weights = '' if inference_server is None: inference_server = '' # listen to env if set model_lock = os.getenv('model_lock', str(model_lock)) model_lock = ast.literal_eval(model_lock) chat_conversation = str_to_list(chat_conversation) text_context_list = str_to_list(text_context_list) llamacpp_dict = str_to_dict(llamacpp_dict) # add others to single dict llamacpp_dict['model_path_llama'] = model_path_llama llamacpp_dict['model_name_gptj'] = model_name_gptj llamacpp_dict['model_name_gpt4all_llama'] = model_name_gpt4all_llama llamacpp_dict['model_name_exllama_if_no_config'] = model_name_exllama_if_no_config # if user overrides but doesn't set these: if 'n_batch' not in llamacpp_dict: llamacpp_dict['n_batch'] = 128 if 'n_gpu_layers' not in llamacpp_dict: llamacpp_dict['n_gpu_layers'] = 100 if 'n_gqa' not in llamacpp_dict: llamacpp_dict['n_gqa'] = 0 if os.environ.get('SERPAPI_API_KEY') is None and LangChainAgent.SEARCH.value in visible_langchain_agents: visible_langchain_agents.remove(LangChainAgent.SEARCH.value) if model_lock: assert gradio, "model_lock only supported for gradio=True" assert not cli, "model_lock only supported for cli=False" assert not (not cli and not gradio), "model_lock only supported for eval (cli=gradio=False)" assert not base_model, "Don't specify model_lock and base_model" assert not tokenizer_base_model, "Don't specify model_lock and tokenizer_base_model" assert not lora_weights, "Don't specify model_lock and lora_weights" assert not inference_server, "Don't specify model_lock and inference_server" # assert not prompt_type, "Don't specify model_lock and prompt_type" # assert not prompt_dict, "Don't specify model_lock and prompt_dict" n_jobs = int(os.getenv('n_jobs', str(n_jobs))) is_hf = bool(int(os.getenv("HUGGINGFACE_SPACES", '0'))) is_gpth2oai = bool(int(os.getenv("GPT_H2O_AI", '0'))) is_public = is_hf or is_gpth2oai # multi-user case with fixed model and disclaimer if is_public: visible_tos_tab = visible_hosts_tab = True if enforce_h2ogpt_api_key is None: enforce_h2ogpt_api_key = True else: if enforce_h2ogpt_api_key is None: enforce_h2ogpt_api_key = False if isinstance(h2ogpt_api_keys, str) and not os.path.isfile(h2ogpt_api_keys): h2ogpt_api_keys = str_to_list(h2ogpt_api_keys) if memory_restriction_level is None: memory_restriction_level = 2 if is_hf else 0 # 2 assumes run on 24GB consumer GPU else: assert 0 <= memory_restriction_level <= 3, "Bad memory_restriction_level=%s" % memory_restriction_level if n_jobs == -1: # if -1, assume hypercores, don't use, force user to pass n_jobs to be specific if not standard cores n_jobs = max(1, os.cpu_count() // 2) if is_public and os.getenv('n_jobs') is None: n_jobs = min(n_jobs, max(1, min(os.cpu_count() // 2, 8))) admin_pass = os.getenv("ADMIN_PASS") # will sometimes appear in UI or sometimes actual generation, but maybe better than empty result # but becomes unrecoverable sometimes if raise, so just be silent for now raise_generate_gpu_exceptions = True rope_scaling = str_to_dict(rope_scaling) if isinstance(auth, str): if auth.strip().startswith('['): auth = str_to_list(auth) if isinstance(auth, str) and auth: auth_filename = auth if not auth_filename: auth_filename = "auth.json" assert isinstance(auth, (str, list, tuple, type(None))), "Unknown type %s for auth=%s" % (type(auth), auth) # allow set token directly use_auth_token = os.environ.get("HUGGING_FACE_HUB_TOKEN", use_auth_token) allow_upload_to_user_data = bool( int(os.environ.get("allow_upload_to_user_data", str(int(allow_upload_to_user_data))))) allow_upload_to_my_data = bool(int(os.environ.get("allow_upload_to_my_data", str(int(allow_upload_to_my_data))))) height = int(os.environ.get("HEIGHT", height)) h2ocolors = bool(int(os.getenv('h2ocolors', h2ocolors))) # allow enabling langchain via ENV # FIRST PLACE where LangChain referenced, but no imports related to it langchain_modes = ast.literal_eval(os.environ.get("langchain_modes", str(langchain_modes))) if not isinstance(langchain_modes, list): langchain_modes = [] # always allow DISABLED if LangChainMode.DISABLED.value not in langchain_modes: langchain_modes.append(LangChainMode.DISABLED.value) if not have_langchain: # only allow disabled, not even LLM that is langchain related langchain_mode = LangChainMode.DISABLED.value langchain_modes = [langchain_mode] # update langchain_mode_paths = str_to_dict(langchain_mode_paths) langchain_mode_types = str_to_dict(langchain_mode_types) for lmode in [LangChainMode.GITHUB_H2OGPT.value, LangChainMode.H2O_DAI_DOCS.value, LangChainMode.WIKI.value, LangChainMode.WIKI_FULL.value, ]: if lmode not in langchain_mode_types: langchain_mode_types[lmode] = 'shared' if lmode not in langchain_mode_paths: langchain_mode_types[lmode] = '' if user_path: user_path = makedirs(user_path, use_base=True) langchain_mode_paths['UserData'] = user_path langchain_mode_paths['UserData'] = LangChainTypes.SHARED.value if is_public: allow_upload_to_user_data = False if LangChainMode.USER_DATA.value in langchain_modes: langchain_modes.remove(LangChainMode.USER_DATA.value) if max_raw_chunks is None: max_raw_chunks = 30 if is_public else 1000000 # in-place, for non-scratch dbs if allow_upload_to_user_data: # always listen to CLI-passed user_path if passed if user_path: langchain_mode_paths['UserData'] = user_path assert langchain_action in langchain_actions, "Invalid langchain_action %s not in %s" % ( langchain_action, langchain_actions) assert len( set(langchain_agents).difference(langchain_agents_list)) == 0, "Invalid langchain_agents %s" % langchain_agents # auto-set langchain_mode langchain_mode = os.environ.get("LANGCHAIN_MODE", langchain_mode) if have_langchain and langchain_mode is None: # start in chat mode, in case just want to chat and don't want to get "No documents to query" by default. if LangChainMode.LLM.value in langchain_modes: langchain_mode = LangChainMode.LLM.value elif len(langchain_modes) >= 1: # infer even if don't pass which langchain_mode, just langchain_modes. langchain_mode = langchain_modes[0] if allow_upload_to_user_data and not is_public and langchain_mode_paths['UserData']: if verbose: print("Auto set langchain_mode=%s. Could use UserData instead." % langchain_mode, flush=True) elif allow_upload_to_my_data: if verbose: print("Auto set langchain_mode=%s. Could use MyData instead." " To allow UserData to pull files from disk," " set user_path or langchain_mode_paths, and ensure allow_upload_to_user_data=True" % langchain_mode, flush=True) else: raise RuntimeError("Please pass --langchain_mode= out of %s" % langchain_modes) if not have_langchain and langchain_mode not in [None, LangChainMode.DISABLED.value, LangChainMode.LLM.value]: raise RuntimeError("Asked for LangChain mode but langchain python package cannot be found.") if langchain_mode is None: # if not set yet, disable langchain_mode = LangChainMode.DISABLED.value print("Auto set langchain_mode=%s Have langchain package: %s" % (langchain_mode, have_langchain), flush=True) # go ahead and add if langchain_mode not in langchain_modes: langchain_modes.append(langchain_mode) if is_public: allow_upload_to_user_data = False input_lines = 1 # ensure set, for ease of use temperature = 0.2 if temperature is None else temperature top_p = 0.85 if top_p is None else top_p top_k = 70 if top_k is None else top_k if is_hf: do_sample = True if do_sample is None else do_sample top_k_docs = 3 if top_k_docs is None else top_k_docs else: # by default don't sample, too chatty do_sample = False if do_sample is None else do_sample top_k_docs = 4 if top_k_docs is None else top_k_docs if memory_restriction_level == 2: if not base_model and not inference_server and not model_lock: base_model = 'h2oai/h2ogpt-oasst1-512-12b' # don't set load_8bit if passed base_model, doesn't always work so can't just override load_8bit = True load_4bit = False # FIXME - consider using 4-bit instead of 8-bit elif not inference_server: top_k_docs = 10 if top_k_docs is None else top_k_docs if memory_restriction_level >= 2: load_8bit = True load_4bit = False # FIXME - consider using 4-bit instead of 8-bit if hf_embedding_model is None: hf_embedding_model = "sentence-transformers/all-MiniLM-L6-v2" top_k_docs = 3 if top_k_docs is None else top_k_docs if top_k_docs is None: top_k_docs = 3 if is_public: if not max_time: max_time = 60 * 2 if not max_max_time: max_max_time = max_time if not max_new_tokens: max_new_tokens = 256 if not max_max_new_tokens: max_max_new_tokens = 512 else: if not max_max_time: max_max_time = 60 * 20 if not max_max_new_tokens: max_max_new_tokens = 1024 if is_hf: # must override share if in spaces share = False if not max_time: max_time = 60 * 1 if not max_max_time: max_max_time = max_time # HF accounted for later in get_max_max_new_tokens() save_dir = os.getenv('SAVE_DIR', save_dir) save_dir = makedirs(save_dir, exist_ok=True, tmp_ok=True, use_base=True) score_model = os.getenv('SCORE_MODEL', score_model) if str(score_model) == 'None': score_model = '' concurrency_count = int(os.getenv('CONCURRENCY_COUNT', concurrency_count)) api_open = bool(int(os.getenv('API_OPEN', str(int(api_open))))) allow_api = bool(int(os.getenv('ALLOW_API', str(int(allow_api))))) n_gpus = torch.cuda.device_count() if torch.cuda.is_available() else 0 n_gpus, gpu_ids = cuda_vis_check(n_gpus) if load_half is None and t5_type(base_model): load_half = False print("load_half=%s auto-set for %s to avoid bad generation" % (load_half, base_model), flush=True) if n_gpus == 0 or get_device() == "mps": # No CUDA GPUs usable if get_device() != "mps": print("No GPUs detected", flush=True) enable_captions = False gpu_id = None load_8bit = False load_4bit = False low_bit_mode = 1 if load_half is None: # wouldn't work if specified True, but respect load_half = False load_gptq = '' load_exllama = False use_gpu_id = False if get_device() == "cuda": torch.backends.cudnn.benchmark = True torch.backends.cudnn.enabled = False torch.set_default_dtype(torch.float32) if is_public and not inference_server and not model_lock: # 12B uses ~94GB # 6.9B uses ~47GB base_model = 'h2oai/h2ogpt-oig-oasst1-512-6_9b' if not base_model else base_model if hf_embedding_model is None: # if no GPUs, use simpler embedding model to avoid cost in time hf_embedding_model = "sentence-transformers/all-MiniLM-L6-v2" if score_model == 'auto': score_model = '' else: if load_half is None: load_half = True # CUDA GPUs visible if score_model == 'auto': if n_gpus >= 2: # will by default place scoring model on last GPU score_model = 'OpenAssistant/reward-model-deberta-v3-large-v2' else: score_model = '' if hf_embedding_model is None: # if still None, then set default hf_embedding_model = 'hkunlp/instructor-large' # get defaults if base_model: model_lower = base_model.lower() elif model_lock: # have 0th model be thought of as normal model assert len(model_lock) > 0 and model_lock[0]['base_model'] model_lower = model_lock[0]['base_model'].lower() else: model_lower = '' if not gradio: # force, else not single response like want to look at stream_output = False # else prompt removal can mess up output chat = False # hard-coded defaults first_para = False text_limit = None if compile_model is None: # too avoid noisy CLI compile_model = not cli if offload_folder: offload_folder = makedirs(offload_folder, exist_ok=True, tmp_ok=True, use_base=True) # defaults caption_loader = None doctr_loader = None pix2struct_loader = None image_loaders_options0, image_loaders_options, \ pdf_loaders_options0, pdf_loaders_options, \ url_loaders_options0, url_loaders_options = lg_to_gr(**locals()) jq_schema0 = jq_schema # transcribe image_loaders = image_loaders_options0 pdf_loaders = pdf_loaders_options0 url_loaders = url_loaders_options0 placeholder_instruction, placeholder_input, \ stream_output, show_examples, \ prompt_type, prompt_dict, \ temperature, top_p, top_k, num_beams, \ max_new_tokens, min_new_tokens, early_stopping, max_time, \ repetition_penalty, num_return_sequences, \ do_sample, \ src_lang, tgt_lang, \ examples, \ task_info = \ get_generate_params(model_lower, chat, stream_output, show_examples, prompt_type, prompt_dict, system_prompt, pre_prompt_query, prompt_query, pre_prompt_summary, prompt_summary, temperature, top_p, top_k, num_beams, max_new_tokens, min_new_tokens, early_stopping, max_time, repetition_penalty, num_return_sequences, do_sample, top_k_docs, chunk, chunk_size, image_loaders, pdf_loaders, url_loaders, jq_schema, docs_ordering_type, min_max_new_tokens, verbose, ) git_hash = get_githash() if is_public or os.getenv('GET_GITHASH') else "GET_GITHASH" locals_dict = locals() locals_print = '\n'.join(['%s: %s' % (k, v) for k, v in locals_dict.items()]) if verbose: print(f"Generating model with params:\n{locals_print}", flush=True) print("Command: %s\nHash: %s" % (str(' '.join(sys.argv)), git_hash), flush=True) if langchain_mode != LangChainMode.DISABLED.value: # SECOND PLACE where LangChain referenced, but all imports are kept local so not required from gpt_langchain import prep_langchain, get_some_dbs_from_hf, get_persist_directory if is_hf: get_some_dbs_from_hf() dbs = {} for langchain_mode1 in langchain_modes: langchain_type = langchain_mode_types.get(langchain_mode1, LangChainTypes.EITHER.value) if langchain_type == LangChainTypes.PERSONAL.value: # shouldn't prepare per-user databases here continue persist_directory1, langchain_type = get_persist_directory(langchain_mode1, langchain_type=langchain_type) langchain_mode_types[langchain_mode1] = langchain_type if langchain_type == LangChainTypes.PERSONAL.value: # shouldn't prepare per-user databases here continue try: db = prep_langchain(persist_directory1, load_db_if_exists, db_type, use_openai_embedding, langchain_mode1, langchain_mode_paths, langchain_mode_types, hf_embedding_model, migrate_embedding_model, auto_migrate_db, kwargs_make_db=locals(), verbose=verbose) finally: # in case updated embeddings or created new embeddings clear_torch_cache() dbs[langchain_mode1] = db # remove None db's so can just rely upon k in dbs for if hav db dbs = {k: v for k, v in dbs.items() if v is not None} else: dbs = {} # import control if os.environ.get("TEST_LANGCHAIN_IMPORT"): assert 'gpt_langchain' not in sys.modules, "Dev bug, import of langchain when should not have" assert 'langchain' not in sys.modules, "Dev bug, import of langchain when should not have" other_model_state_defaults = dict(load_8bit=load_8bit, load_4bit=load_4bit, low_bit_mode=low_bit_mode, load_half=load_half, load_gptq=load_gptq, load_exllama=load_exllama, use_safetensors=use_safetensors, revision=revision, use_gpu_id=use_gpu_id, gpu_id=gpu_id, compile_model=compile_model, use_cache=use_cache, llamacpp_dict=llamacpp_dict, model_path_llama=model_path_llama, model_name_gptj=model_name_gptj, model_name_gpt4all_llama=model_name_gpt4all_llama, model_name_exllama_if_no_config=model_name_exllama_if_no_config, ) model_state_none = dict(model=None, tokenizer=None, device=None, base_model=None, tokenizer_base_model=None, lora_weights=None, inference_server=None, prompt_type=None, prompt_dict=None, visible_models=None, h2ogpt_key=None, ) model_state_none.update(other_model_state_defaults) my_db_state0 = {LangChainMode.MY_DATA.value: [None, None, None]} selection_docs_state0 = dict(langchain_modes=langchain_modes, langchain_mode_paths=langchain_mode_paths, langchain_mode_types=langchain_mode_types) selection_docs_state = copy.deepcopy(selection_docs_state0) if cli or not gradio: # initial state for query prompt model_name = base_model pre_prompt_query, prompt_query, pre_prompt_summary, prompt_summary = \ get_langchain_prompts(pre_prompt_query, prompt_query, pre_prompt_summary, prompt_summary, model_name, inference_server, model_path_llama) if cli: from cli import run_cli return run_cli(**get_kwargs(run_cli, exclude_names=['model_state0'], **locals())) elif not gradio: from eval import run_eval return run_eval(**get_kwargs(run_eval, exclude_names=['model_state0'], **locals())) elif gradio or prepare_offline_level > 0: # imported here so don't require gradio to run generate from gradio_runner import go_gradio # get default model model_states = [] model_list = [dict(base_model=base_model, tokenizer_base_model=tokenizer_base_model, lora_weights=lora_weights, inference_server=inference_server, prompt_type=prompt_type, prompt_dict=prompt_dict, visible_models=None, h2ogpt_key=None)] model_list[0].update(other_model_state_defaults) # FIXME: hyper per model, not about model loading # for k in gen_hyper: # model_list[k] = locals()[k] model_list0 = copy.deepcopy(model_list) # just strings, safe to deepcopy model_state0 = model_state_none.copy() assert len(model_state_none) == len(model_state0) if model_lock: model_list = model_lock # do reverse, so first is default base_model etc., so some logic works in go_gradio() more easily for model_dict in reversed(model_list): # handle defaults user didn't have to pass # special defaults, ignore defaults for these if not specifically set, replace with '' model_dict['base_model'] = model_dict.get('base_model', '') model_dict['tokenizer_base_model'] = model_dict.get('tokenizer_base_model', '') model_dict['lora_weights'] = model_dict.get('lora_weights', '') model_dict['inference_server'] = model_dict.get('inference_server', '') if prepare_offline_level >= 2: if 'openai' not in model_dict['inference_server'] and 'replicate' not in model_dict['inference_server']: # assume want locally, but OpenAI and replicate are never local for model part model_dict['inference_server'] = '' prompt_type_infer = not model_dict.get('prompt_type') model_dict['prompt_type'] = model_dict.get('prompt_type', model_list0[0]['prompt_type']) # don't use mutated value # rest of generic defaults for k in model_list0[0]: if k not in model_dict: model_dict[k] = model_list0[0][k] # begin prompt adjustments # get query prompt for (say) last base model if using model lock pre_prompt_query1, prompt_query1, pre_prompt_summary1, prompt_summary1 = ( get_langchain_prompts(pre_prompt_query, prompt_query, pre_prompt_summary, prompt_summary, model_dict['base_model'], model_dict['inference_server'], model_dict['model_path_llama'])) # if mixed setup, choose non-empty so best models best # FIXME: Make per model dict passed through to evaluate pre_prompt_query = pre_prompt_query or pre_prompt_query1 prompt_query = prompt_query or prompt_query1 pre_prompt_summary = pre_prompt_summary or pre_prompt_summary1 prompt_summary = prompt_summary or prompt_summary1 # try to infer, ignore empty initial state leading to get_generate_params -> 'plain' if prompt_type_infer: model_lower1 = model_dict['base_model'].lower() if model_lower1 in inv_prompt_type_to_model_lower: model_dict['prompt_type'] = inv_prompt_type_to_model_lower[model_lower1] model_dict['prompt_dict'], error0 = get_prompt(model_dict['prompt_type'], '', chat=False, context='', reduced=False, making_context=False, return_dict=True, system_prompt=system_prompt) else: model_dict['prompt_dict'] = prompt_dict else: model_dict['prompt_dict'] = prompt_dict model_dict['prompt_dict'] = model_dict.get('prompt_dict', model_dict['prompt_dict']) # end prompt adjustments all_kwargs = locals().copy() all_kwargs.update(model_dict) if model_dict['base_model'] and not login_mode_if_model0: model0, tokenizer0, device = get_model(reward_type=False, **get_kwargs(get_model, exclude_names=['reward_type'], **all_kwargs)) else: # if empty model, then don't load anything, just get gradio up model0, tokenizer0, device = None, None, None if model0 is None: if fail_if_cannot_connect: raise RuntimeError("Could not connect, see logs") # skip if isinstance(model_lock, list): model_lock.remove(model_dict) continue model_state_trial = dict(model=model0, tokenizer=tokenizer0, device=device) model_state_trial.update(model_dict) diff_keys = set(list(model_state_none.keys())).symmetric_difference(model_state_trial.keys()) assert len(model_state_none) == len(model_state_trial), diff_keys print("Model %s" % model_dict, flush=True) if model_lock: # last in iteration will be first model_states.insert(0, model_state_trial) # fill model_state0 so go_gradio() easier, manage model_states separately model_state0 = model_state_trial.copy() else: model_state0 = model_state_trial.copy() assert len(model_state_none) == len(model_state0) visible_models = str_to_list(visible_models, allow_none=True) # None means first model all_models = [x.get('base_model', xi) for xi, x in enumerate(model_states)] visible_models_state0 = [x.get('base_model', xi) for xi, x in enumerate(model_states) if visible_models is None or x.get('base_model', xi) in visible_models or xi in visible_models] # update to be consistent with what is passed from CLI and model chose # do after go over all models if multi-model, so don't contaminate # This is just so UI shows reasonable correct value, not 2048 dummy value if len(model_states) >= 1: max_seq_len = model_states[0]['tokenizer'].model_max_length # get score model all_kwargs = locals().copy() smodel, stokenizer, sdevice = get_score_model(reward_type=True, **get_kwargs(get_score_model, exclude_names=['reward_type'], **all_kwargs)) score_model_state0 = dict(model=smodel, tokenizer=stokenizer, device=sdevice, base_model=score_model, tokenizer_base_model='', lora_weights='', inference_server='', prompt_type='', prompt_dict='', visible_models=None, h2ogpt_key=None) if enable_captions: if pre_load_caption_model: from image_captions import H2OImageCaptionLoader caption_loader = H2OImageCaptionLoader(caption_gpu=caption_gpu).load_model() else: caption_loader = 'gpu' if n_gpus > 0 and caption_gpu else 'cpu' else: caption_loader = False if pre_load_embedding_model and \ langchain_mode != LangChainMode.DISABLED.value and \ not use_openai_embedding: from src.gpt_langchain import get_embedding hf_embedding_model = dict(name=hf_embedding_model, model=get_embedding(use_openai_embedding, hf_embedding_model=hf_embedding_model, preload=True)) if enable_doctr or enable_pdf_ocr in [True, 'auto', 'on']: doctr_loader = 'gpu' if n_gpus > 0 and doctr_gpu else 'cpu' else: doctr_loader = False # assume gradio needs everything go_gradio(**locals()) def get_config(base_model, use_auth_token=False, trust_remote_code=True, offload_folder=None, revision=None, rope_scaling=None, triton_attn=False, long_sequence=True, return_model=False, raise_exception=False, max_seq_len=None, verbose=False, ): from accelerate import init_empty_weights with init_empty_weights(): from transformers import AutoConfig try: config = AutoConfig.from_pretrained(base_model, use_auth_token=use_auth_token, trust_remote_code=trust_remote_code, offload_folder=offload_folder, revision=revision, rope_scaling=rope_scaling if rope_scaling else None) except OSError as e: if raise_exception: raise if 'not a local folder and is not a valid model identifier listed on' in str( e) or '404 Client Error' in str(e) or "couldn't connect" in str(e): # e.g. llama, gpjt, etc. # e.g. HF TGI but not model on HF or private etc. if max_seq_len is None and base_model.lower() in non_hf_types: print("Could not determine --max_seq_len, setting to 2048. Pass if not correct", flush=True) max_seq_len = 2048 # HF TGI server only should really require prompt_type, not HF model state return None, None, max_seq_len else: raise if triton_attn and 'mpt-' in base_model.lower(): config.attn_config['attn_impl'] = 'triton' if long_sequence: if 'mpt-7b-storywriter' in base_model.lower(): config.update({"max_seq_len": 83968}) if 'mosaicml/mpt-7b-chat' in base_model.lower(): config.update({"max_seq_len": 4096}) if 'mpt-30b' in base_model.lower(): config.update({"max_seq_len": 2 * 8192}) if return_model and \ issubclass(config.__class__, tuple(AutoModel._model_mapping.keys())): model = AutoModel.from_config( config, trust_remote_code=trust_remote_code, ) else: # can't infer model = None if 'falcon' in base_model.lower(): config.use_cache = False # allow override if max_seq_len is not None: print("Overriding max_seq_len -> %d" % max_seq_len, flush=True) else: if hasattr(config, 'max_seq_len'): max_seq_len = int(config.max_seq_len) elif hasattr(config, 'max_position_embeddings') and isinstance(config.max_position_embeddings, int): # help automatically limit inputs to generate max_seq_len = config.max_position_embeddings if verbose: print("Used max_position_embeddings=%s as base model (pre-rope) max_seq_len." " If not desired, pass --max_seq_len and set to some integer value." % config.max_position_embeddings, flush=True) elif hasattr(config, 'n_ctx'): # e.g. gpt2 max_seq_len = int(config.n_ctx) else: print("Could not determine --max_seq_len, setting to 2048. Pass if not correct", flush=True) max_seq_len = 2048 # FIXME: # raise RuntimeError("Could not determine max_seq_len," # " please pass --max_seq_len and set to some value, e.g. 2048.") if rope_scaling: if rope_scaling.get('factor'): # HF transformers max_seq_len *= rope_scaling.get('factor') elif rope_scaling.get('alpha_value'): # exllama # Note: exllama's own tokenizer has this set correctly in loaders.py, this config will be unused max_seq_len *= rope_scaling.get('alpha_value') print("Automatically setting max_seq_len=%d for RoPE scaling" % max_seq_len, flush=True) return config, model, max_seq_len def get_non_lora_model(base_model, model_loader, load_half, load_gptq, load_exllama, use_safetensors, revision, model_kwargs, reward_type, config, model, gpu_id=0, ): """ Ensure model gets on correct device """ if model is not None: # NOTE: Can specify max_memory={0: max_mem, 1: max_mem}, to shard model # NOTE: Some models require avoiding sharding some layers, # then would pass no_split_module_classes and give list of those layers. from accelerate import infer_auto_device_map device_map = infer_auto_device_map( model, dtype=torch.float16 if load_half else torch.float32, ) if hasattr(model, 'model'): device_map_model = infer_auto_device_map( model.model, dtype=torch.float16 if load_half else torch.float32, ) device_map.update(device_map_model) else: device_map = "auto" n_gpus = torch.cuda.device_count() if torch.cuda.is_available() else 0 n_gpus, gpu_ids = cuda_vis_check(n_gpus) if n_gpus > 0: if gpu_id >= 0: # FIXME: If really distributes model, tend to get things like: ValueError: gpt_neox.embed_in.weight doesn't have any device set. # So avoid for now, just put on first GPU, unless score_model, put on last if reward_type: device_map = {'': n_gpus - 1} else: device_map = {'': min(n_gpus - 1, gpu_id)} if gpu_id == -1: device_map = {'': 'cuda'} else: device_map = {'': 'cpu'} model_kwargs['load_in_8bit'] = False model_kwargs['load_in_4bit'] = False print('device_map: %s' % device_map, flush=True) load_in_8bit = model_kwargs.get('load_in_8bit', False) load_in_4bit = model_kwargs.get('load_in_4bit', False) model_kwargs['device_map'] = device_map model_kwargs['use_safetensors'] = use_safetensors model_kwargs['revision'] = revision pop_unused_model_kwargs(model_kwargs) if load_exllama: model = model_loader elif load_gptq: if 'Llama-2-70B-chat-GPTQ' in base_model: model_kwargs.update(dict(inject_fused_attention=False)) model_kwargs.pop('torch_dtype', None) model_kwargs.pop('device_map') model = model_loader( model_name_or_path=base_model, model_basename=load_gptq, **model_kwargs, ) elif load_in_8bit or load_in_4bit or not load_half: model = model_loader( base_model, config=config, **model_kwargs, ) else: model = model_loader( base_model, config=config, **model_kwargs, ) if not getattr(model, "is_quantized", False): model = model.half() return model def get_client_from_inference_server(inference_server, base_model=None, raise_connection_exception=False): inference_server, headers = get_hf_server(inference_server) # preload client since slow for gradio case especially from gradio_utils.grclient import GradioClient gr_client = None hf_client = None if headers is None: try: print("GR Client Begin: %s %s" % (inference_server, base_model), flush=True) # first do sanity check if alive, else gradio client takes too long by default requests.get(inference_server, timeout=int(os.getenv('REQUEST_TIMEOUT', '30'))) gr_client = GradioClient(inference_server) print("GR Client End: %s" % inference_server, flush=True) except (OSError, ValueError) as e: # Occurs when wrong endpoint and should have been HF client, so don't hard raise, just move to HF gr_client = None print("GR Client Failed %s %s: %s" % (inference_server, base_model, str(e)), flush=True) except (ConnectTimeoutError, ConnectTimeout, MaxRetryError, ConnectionError, ConnectionError2, JSONDecodeError, ReadTimeout2, KeyError) as e: t, v, tb = sys.exc_info() ex = ''.join(traceback.format_exception(t, v, tb)) print("GR Client Failed %s %s: %s" % (inference_server, base_model, str(ex)), flush=True) if raise_connection_exception: raise if gr_client is None: res = None from text_generation import Client as HFClient print("HF Client Begin: %s %s" % (inference_server, base_model)) try: hf_client = HFClient(inference_server, headers=headers, timeout=int(os.getenv('REQUEST_TIMEOUT', '30'))) # quick check valid TGI endpoint res = hf_client.generate('What?', max_new_tokens=1) hf_client = HFClient(inference_server, headers=headers, timeout=300) except (ConnectTimeoutError, ConnectTimeout, MaxRetryError, ConnectionError, ConnectionError2, JSONDecodeError, ReadTimeout2, KeyError) as e: hf_client = None t, v, tb = sys.exc_info() ex = ''.join(traceback.format_exception(t, v, tb)) print("HF Client Failed %s %s: %s" % (inference_server, base_model, str(ex))) if raise_connection_exception: raise print("HF Client End: %s %s : %s" % (inference_server, base_model, res)) return inference_server, gr_client, hf_client def get_model( load_8bit: bool = False, load_4bit: bool = False, low_bit_mode: int = 1, load_half: bool = True, load_gptq: str = '', load_exllama: bool = False, use_safetensors: bool = False, revision: str = None, use_gpu_id: bool = True, base_model: str = '', inference_server: str = "", tokenizer_base_model: str = '', lora_weights: str = "", gpu_id: int = 0, n_jobs=None, reward_type: bool = None, local_files_only: bool = False, resume_download: bool = True, use_auth_token: Union[str, bool] = False, trust_remote_code: bool = True, offload_folder: str = None, rope_scaling: dict = None, max_seq_len: int = None, compile_model: bool = True, llamacpp_dict=None, verbose: bool = False, ): """ :param load_8bit: load model in 8-bit, not supported by all models :param load_4bit: load model in 4-bit, not supported by all models :param low_bit_mode: See gen.py :param load_half: load model in 16-bit :param load_gptq: GPTQ model_basename :param load_exllama: whether to use exllama :param use_safetensors: use safetensors file :param revision: :param use_gpu_id: Use torch infer of optimal placement of layers on devices (for non-lora case) For non-LORA case, False will spread shards across multiple GPUs, but this can lead to cuda:x cuda:y mismatches So it is not the default :param base_model: name/path of base model :param inference_server: whether base_model is hosted locally ('') or via http (url) :param tokenizer_base_model: name/path of tokenizer :param lora_weights: name/path :param gpu_id: which GPU (0..n_gpus-1) or allow all GPUs if relevant (-1) :param n_jobs: number of cores to use (e.g. for llama CPU model) :param reward_type: reward type model for sequence classification :param local_files_only: use local files instead of from HF :param resume_download: resume downloads from HF :param use_auth_token: assumes user did on CLI `huggingface-cli login` to access private repo :param trust_remote_code: trust code needed by model :param offload_folder: offload folder :param rope_scaling: scaling for rope-based models, e.g. "{'type':'dynamic', 'factor':4}" :param max_seq_len: override for maximum sequence length for model :param max_seq_len: if set, use as max_seq_len for model :param compile_model: whether to compile torch model :param llamacpp_dict: dict of llama.cpp and GPT4All model options :param verbose: :return: """ print("Starting get_model: %s %s" % (base_model, inference_server), flush=True) triton_attn = False long_sequence = True config_kwargs = dict(use_auth_token=use_auth_token, trust_remote_code=trust_remote_code, offload_folder=offload_folder, rope_scaling=rope_scaling, triton_attn=triton_attn, long_sequence=long_sequence, revision=revision, max_seq_len=max_seq_len, verbose=verbose) config, _, max_seq_len = get_config(base_model, **config_kwargs, raise_exception=False) if base_model in non_hf_types: assert config is None, "Expected config None for %s" % base_model llama_type_from_config = 'llama' in str(config).lower() llama_type_from_name = "llama" in base_model.lower() llama_type = llama_type_from_config or llama_type_from_name if "xgen" in base_model.lower() or 'llama2' in base_model.lower() or 'llama-2' in base_model.lower(): llama_type = False if llama_type: if verbose: print("Detected as llama type from" " config (%s) or name (%s)" % (llama_type_from_config, llama_type_from_name), flush=True) model_name_exllama_if_no_config = '' if not llamacpp_dict else llamacpp_dict.get('model_name_exllama_if_no_config', '') model_loader, tokenizer_loader, conditional_type = ( get_loaders(model_name=base_model, reward_type=reward_type, llama_type=llama_type, load_gptq=load_gptq, load_exllama=load_exllama, config=config, rope_scaling=rope_scaling, max_seq_len=max_seq_len, model_name_exllama_if_no_config=model_name_exllama_if_no_config)) tokenizer_kwargs = dict(local_files_only=local_files_only, resume_download=resume_download, use_auth_token=use_auth_token, trust_remote_code=trust_remote_code, offload_folder=offload_folder, revision=revision, padding_side='left', config=config, ) if not tokenizer_base_model: tokenizer_base_model = base_model if load_exllama: tokenizer = tokenizer_loader elif config is not None and tokenizer_loader is not None and not isinstance(tokenizer_loader, str): if load_exllama: tokenizer = tokenizer_loader else: tokenizer = tokenizer_loader.from_pretrained(tokenizer_base_model, **tokenizer_kwargs) # sets raw (no cushion) limit # If using RoPE with scaling, then for non-exllama models (e.g. HF models), # then config -> tokenizer will set model_max_length correctly set_model_max_len(max_seq_len, tokenizer, verbose=False) # if using fake tokenizer, not really accurate when lots of numbers, give a bit of buffer, else get: # Generation Failed: Input validation error: `inputs` must have less than 2048 tokens. Given: 2233 tokenizer.model_max_length = tokenizer.model_max_length - 50 else: tokenizer = None if isinstance(inference_server, str) and inference_server.startswith("http"): inference_server, gr_client, hf_client = get_client_from_inference_server(inference_server, base_model=base_model) client = gr_client or hf_client # Don't return None, None for model, tokenizer so triggers if tokenizer is None: # FIXME: Could use only tokenizer from llama etc. but hard to detatch from model, just use fake for now if os.getenv("HARD_ASSERTS") and base_model not in non_hf_types: raise RuntimeError("Unexpected tokenizer=None") tokenizer = FakeTokenizer() return client, tokenizer, 'http' if isinstance(inference_server, str) and ( inference_server.startswith('openai') or inference_server.startswith('vllm') or inference_server.startswith('replicate') or inference_server.startswith('sagemaker') ): if inference_server.startswith('openai'): assert os.getenv('OPENAI_API_KEY'), "Set environment for OPENAI_API_KEY" # Don't return None, None for model, tokenizer so triggers # include small token cushion max_seq_len = model_token_mapping[base_model] if inference_server.startswith('replicate'): assert len(inference_server.split(':')) >= 3, "Expected replicate:model string, got %s" % inference_server assert os.getenv('REPLICATE_API_TOKEN'), "Set environment for REPLICATE_API_TOKEN" assert max_seq_len is not None, "Please pass --max_seq_len= for replicate models." try: import replicate as replicate_python except ImportError: raise ImportError( "Could not import replicate python package. " "Please install it with `pip install replicate`." ) if inference_server.startswith('sagemaker'): assert len( inference_server.split( ':')) >= 3, "Expected sagemaker_chat::, got %s" % inference_server assert os.getenv('AWS_ACCESS_KEY_ID'), "Set environment for AWS_ACCESS_KEY_ID" assert os.getenv('AWS_SECRET_ACCESS_KEY'), "Set environment for AWS_SECRET_ACCESS_KEY" # Don't return None, None for model, tokenizer so triggers # include small token cushion if inference_server.startswith('openai') or tokenizer is None: # don't use fake (tiktoken) tokenizer for vLLM//replicate if know actual model with actual tokenizer tokenizer = FakeTokenizer(model_max_length=max_seq_len - 50) return inference_server, tokenizer, inference_server assert not inference_server, "Malformed inference_server=%s" % inference_server if base_model in non_hf_types: from gpt4all_llm import get_model_tokenizer_gpt4all model, tokenizer, device = get_model_tokenizer_gpt4all(base_model, n_jobs=n_jobs, max_seq_len=max_seq_len, llamacpp_dict=llamacpp_dict) return model, tokenizer, device if load_exllama: return model_loader, tokenizer, 'cuda' # get local torch-HF model return get_hf_model(load_8bit=load_8bit, load_4bit=load_4bit, low_bit_mode=low_bit_mode, load_half=load_half, load_gptq=load_gptq, use_safetensors=use_safetensors, revision=revision, use_gpu_id=use_gpu_id, base_model=base_model, tokenizer_base_model=tokenizer_base_model, lora_weights=lora_weights, gpu_id=gpu_id, reward_type=reward_type, local_files_only=local_files_only, resume_download=resume_download, use_auth_token=use_auth_token, trust_remote_code=trust_remote_code, offload_folder=offload_folder, rope_scaling=rope_scaling, compile_model=compile_model, llama_type=llama_type, config_kwargs=config_kwargs, tokenizer_kwargs=tokenizer_kwargs, verbose=verbose) def get_hf_model(load_8bit: bool = False, load_4bit: bool = False, low_bit_mode: int = 1, load_half: bool = True, load_gptq: str = '', use_safetensors: bool = False, revision: str = None, use_gpu_id: bool = True, base_model: str = '', tokenizer_base_model: str = '', lora_weights: str = "", gpu_id: int = 0, reward_type: bool = None, local_files_only: bool = False, resume_download: bool = True, use_auth_token: Union[str, bool] = False, trust_remote_code: bool = True, offload_folder: str = None, rope_scaling: dict = None, compile_model: bool = True, llama_type: bool = False, config_kwargs=None, tokenizer_kwargs=None, verbose: bool = False, ): assert config_kwargs is not None assert tokenizer_kwargs is not None load_exllama = False # Never should be in HF code for exllama if lora_weights is not None and lora_weights.strip(): if verbose: print("Get %s lora weights" % lora_weights, flush=True) device = get_device() if 'gpt2' in base_model.lower(): # RuntimeError: where expected condition to be a boolean tensor, but got a tensor with dtype Half load_8bit = False load_4bit = False assert base_model.strip(), ( "Please choose a base model with --base_model (CLI) or load one from Models Tab (gradio)" ) model_loader, tokenizer_loader, conditional_type = ( get_loaders(model_name=base_model, reward_type=reward_type, llama_type=llama_type, load_gptq=load_gptq, load_exllama=load_exllama)) config, _, max_seq_len = get_config(base_model, return_model=False, raise_exception=True, **config_kwargs) if tokenizer_loader is not None and not isinstance(tokenizer_loader, str): if load_exllama: tokenizer = tokenizer_loader else: tokenizer = tokenizer_loader.from_pretrained(tokenizer_base_model, **tokenizer_kwargs) else: tokenizer = tokenizer_loader if isinstance(tokenizer, str): # already a pipeline, tokenizer_loader is string for task model = model_loader(tokenizer, model=base_model, device=0 if device == "cuda" else -1, torch_dtype=torch.float16 if device == 'cuda' else torch.float32) else: assert device in ["cuda", "cpu", "mps"], "Unsupported device %s" % device model_kwargs = dict(local_files_only=local_files_only, torch_dtype=torch.float16 if device == 'cuda' else torch.float32, resume_download=resume_download, use_auth_token=use_auth_token, trust_remote_code=trust_remote_code, offload_folder=offload_folder, revision=revision, # rope_scaling=rope_scaling, # only put into config ) if 'mbart-' not in base_model.lower() and 'mpt-' not in base_model.lower(): if use_gpu_id and gpu_id is not None and gpu_id >= 0 and device == 'cuda': device_map = {"": gpu_id} else: device_map = "auto" model_kwargs.update(dict(load_in_8bit=load_8bit, load_in_4bit=load_4bit, device_map=device_map, )) if 'mpt-' in base_model.lower() and gpu_id is not None and gpu_id >= 0: # MPT doesn't support spreading over GPUs model_kwargs.update(dict(device_map={"": gpu_id} if device == 'cuda' else "cpu")) if 'OpenAssistant/reward-model'.lower() in base_model.lower(): # FIXME: could put on other GPUs model_kwargs['device_map'] = {"": 0} if device == 'cuda' else {"": 'cpu'} model_kwargs.pop('torch_dtype', None) pop_unused_model_kwargs(model_kwargs) n_gpus = torch.cuda.device_count() if torch.cuda.is_available() else 0 n_gpus, gpu_ids = cuda_vis_check(n_gpus) if low_bit_mode == 1 and n_gpus != 0: from transformers import BitsAndBytesConfig model_kwargs['quantization_config'] = BitsAndBytesConfig(bnb_4bit_compute_dtype=torch.bfloat16, load_in_4bit=load_4bit, load_in_8bit=load_8bit, ) elif low_bit_mode == 2 and n_gpus != 0: from transformers import BitsAndBytesConfig model_kwargs['quantization_config'] = BitsAndBytesConfig(bnb_4bit_quant_type="nf4", load_in_4bit=load_4bit, load_in_8bit=load_8bit, ) elif low_bit_mode == 3 and n_gpus != 0: from transformers import BitsAndBytesConfig model_kwargs['quantization_config'] = BitsAndBytesConfig(bnb_4bit_use_double_quant=True, load_in_4bit=load_4bit, load_in_8bit=load_8bit, ) elif low_bit_mode == 4 and n_gpus != 0: from transformers import BitsAndBytesConfig model_kwargs['quantization_config'] = BitsAndBytesConfig(bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4", load_in_4bit=load_4bit, load_in_8bit=load_8bit, ) if not lora_weights: # torch.device context uses twice memory for AutoGPTQ context = NullContext if load_gptq else torch.device with context(device): if use_gpu_id: config, model, max_seq_len = get_config(base_model, return_model=True, raise_exception=True, **config_kwargs) model = get_non_lora_model(base_model, model_loader, load_half, load_gptq, load_exllama, use_safetensors, revision, model_kwargs, reward_type, config, model, gpu_id=gpu_id, ) else: config, _, max_seq_len = get_config(base_model, **config_kwargs) if load_half and not (load_8bit or load_4bit or load_gptq): model = model_loader( base_model, config=config, **model_kwargs) if not getattr(model, "is_quantized", False): model = model.half() else: model = model_loader( base_model, config=config, **model_kwargs) elif load_8bit or load_4bit: config, _, max_seq_len = get_config(base_model, **config_kwargs) model = model_loader( base_model, config=config, **model_kwargs ) from peft import PeftModel # loads cuda, so avoid in global scope model = PeftModel.from_pretrained( model, lora_weights, torch_dtype=torch.float16 if device == 'cuda' else torch.float32, local_files_only=local_files_only, resume_download=resume_download, use_auth_token=use_auth_token, trust_remote_code=trust_remote_code, offload_folder=offload_folder, rope_scaling=rope_scaling, revision=revision, device_map={"": 0} if device == 'cuda' else {"": 'cpu'}, # seems to be required ) else: with torch.device(device): config, _, max_seq_len = get_config(base_model, raise_exception=True, **config_kwargs) model = model_loader( base_model, config=config, **model_kwargs ) from peft import PeftModel # loads cuda, so avoid in global scope model = PeftModel.from_pretrained( model, lora_weights, torch_dtype=torch.float16 if device == 'cuda' else torch.float32, local_files_only=local_files_only, resume_download=resume_download, use_auth_token=use_auth_token, trust_remote_code=trust_remote_code, offload_folder=offload_folder, rope_scaling=rope_scaling, device_map="auto", ) if load_half and not load_gptq: if not getattr(model, "is_quantized", False): model = model.half() # unwind broken decapoda-research config if llama_type: model.config.pad_token_id = tokenizer.pad_token_id = 0 # unk model.config.bos_token_id = 1 model.config.eos_token_id = 2 if 'gpt2' in base_model.lower(): # add special tokens that otherwise all share the same id tokenizer.add_special_tokens({'bos_token': '', 'eos_token': '', 'pad_token': ''}) if not isinstance(tokenizer, str): model.eval() if torch.__version__ >= "2" and sys.platform != "win32" and compile_model: model = torch.compile(model) set_model_max_len(max_seq_len, tokenizer, verbose=False, reward_type=reward_type) # tell if conditional type model.conditional_type = conditional_type tokenizer.conditional_type = conditional_type return model, tokenizer, device def set_model_max_len(max_seq_len, tokenizer, verbose=False, reward_type=False): if reward_type: # limit deberta, else uses too much memory and not worth response score tokenizer.model_max_length = 512 return tokenizer.model_max_length = int(max_seq_len) if verbose: print("model_max_length=%s" % tokenizer.model_max_length, flush=True) # for bug in HF transformers if tokenizer.model_max_length > 100000000: tokenizer.model_max_length = 2048 def pop_unused_model_kwargs(model_kwargs): """ in-place pop unused kwargs that are not dependency-upgrade friendly no point passing in False, is default, and helps avoid needing to update requirements for new deps :param model_kwargs: :return: """ check_list = ['load_in_8bit', 'load_in_4bit'] for k in check_list: if k in model_kwargs and not model_kwargs[k]: model_kwargs.pop(k) def get_score_model(score_model: str = None, load_8bit: bool = False, load_4bit: bool = False, low_bit_mode=1, load_half: bool = True, load_gptq: str = '', load_exllama: bool = False, use_gpu_id: bool = True, base_model: str = '', inference_server: str = '', tokenizer_base_model: str = '', lora_weights: str = "", gpu_id: int = 0, n_jobs=None, reward_type: bool = None, local_files_only: bool = False, resume_download: bool = True, use_auth_token: Union[str, bool] = False, trust_remote_code: bool = True, offload_folder: str = None, rope_scaling: dict = None, compile_model: bool = True, llamacpp_dict: typing.Dict = None, verbose: bool = False, ): if score_model is not None and score_model.strip(): load_8bit = False load_4bit = False low_bit_mode = 1 load_half = False load_gptq = '' load_exllama = False use_safetensors = False revision = None base_model = score_model.strip() tokenizer_base_model = '' lora_weights = '' inference_server = '' llama_type = False max_seq_len = None compile_model = False llamacpp_dict = {} smodel, stokenizer, sdevice = get_model(reward_type=True, **get_kwargs(get_model, exclude_names=['reward_type'], **locals())) else: smodel, stokenizer, sdevice = None, None, None return smodel, stokenizer, sdevice def evaluate_fake(*args, **kwargs): yield dict(response=invalid_key_msg, sources='') return def evaluate( model_state, my_db_state, selection_docs_state, requests_state, # START NOTE: Examples must have same order of parameters instruction, iinput, context, stream_output, prompt_type, prompt_dict, temperature, top_p, top_k, num_beams, max_new_tokens, min_new_tokens, early_stopping, max_time, repetition_penalty, num_return_sequences, do_sample, chat, instruction_nochat, iinput_nochat, langchain_mode, add_chat_history_to_context, langchain_action, langchain_agents, top_k_docs, chunk, chunk_size, document_subset, document_choice, pre_prompt_query, prompt_query, pre_prompt_summary, prompt_summary, system_prompt, image_loaders, pdf_loaders, url_loaders, jq_schema, visible_models, h2ogpt_key, add_search_to_context, chat_conversation, text_context_list, docs_ordering_type, min_max_new_tokens, # END NOTE: Examples must have same order of parameters captions_model=None, caption_loader=None, doctr_loader=None, pix2struct_loader=None, async_output=None, num_async=None, src_lang=None, tgt_lang=None, debug=False, concurrency_count=None, save_dir=None, sanitize_bot_response=False, model_state0=None, memory_restriction_level=None, max_max_new_tokens=None, is_public=None, max_max_time=None, raise_generate_gpu_exceptions=None, lora_weights=None, use_llm_if_no_docs=True, load_db_if_exists=True, dbs=None, detect_user_path_changes_every_query=None, use_openai_embedding=None, use_openai_model=None, hf_embedding_model=None, migrate_embedding_model=None, auto_migrate_db=None, cut_distance=None, db_type=None, n_jobs=None, first_para=None, text_limit=None, show_accordions=None, top_k_docs_max_show=None, show_link_in_sources=None, verbose=False, cli=False, use_cache=None, auto_reduce_chunks=None, max_chunks=None, headsize=None, model_lock=None, force_langchain_evaluate=None, model_state_none=None, load_exllama=None, answer_with_sources=None, append_sources_to_answer=None, image_loaders_options0=None, pdf_loaders_options0=None, url_loaders_options0=None, jq_schema0=None, keep_sources_in_context=None, ): # ensure passed these assert concurrency_count is not None assert memory_restriction_level is not None assert raise_generate_gpu_exceptions is not None assert use_openai_embedding is not None assert use_openai_model is not None assert hf_embedding_model is not None assert migrate_embedding_model is not None assert auto_migrate_db is not None assert db_type is not None assert top_k_docs is not None and isinstance(top_k_docs, int) assert chunk is not None and isinstance(chunk, bool) assert chunk_size is not None and isinstance(chunk_size, int) assert n_jobs is not None assert first_para is not None assert isinstance(add_chat_history_to_context, bool) assert isinstance(add_search_to_context, bool) assert load_exllama is not None # for lazy client (even chat client) if image_loaders is None: image_loaders = image_loaders_options0 if pdf_loaders is None: pdf_loaders = pdf_loaders_options0 if url_loaders is None: url_loaders = url_loaders_options0 if jq_schema is None: jq_schema = jq_schema0 if isinstance(langchain_agents, str): if langchain_agents.strip().startswith('['): # already list, but as string langchain_agents = str_to_list(langchain_agents) else: # just 1 item and make list langchain_agents = [langchain_agents] chat_conversation = str_to_list(chat_conversation) text_context_list = str_to_list(text_context_list) langchain_modes = selection_docs_state['langchain_modes'] langchain_mode_paths = selection_docs_state['langchain_mode_paths'] langchain_mode_types = selection_docs_state['langchain_mode_types'] if debug: locals_dict = locals().copy() locals_dict.pop('model_state', None) locals_dict.pop('model_state0', None) locals_dict.pop('model_states', None) print(locals_dict) no_model_msg = "Please choose a base model with --base_model (CLI) or load in Models Tab (gradio).\n" \ "Then start New Conversation" if model_state is None: model_state = model_state_none.copy() if model_state0 is None: # e.g. for no gradio case, set dummy value, else should be set model_state0 = model_state_none.copy() # model_state['model] is only 'model' if should use model_state0 # model could also be None have_model_lock = model_lock is not None have_fresh_model = model_state['model'] not in [None, 'model', no_model_str] # for gradio UI control, expect model_state and model_state0 to match, so if have_model_lock=True, then should have_fresh_model=True # but gradio API control will only use nochat api etc. and won't use fresh model, so can't assert in general # if have_model_lock: # assert have_fresh_model, "Expected model_state and model_state0 to match if have_model_lock" have_cli_model = model_state0['model'] not in [None, 'model', no_model_str] if have_fresh_model: # USE FRESH MODEL if not have_model_lock: # model_state0 is just one of model_state if model_lock, so don't nuke # try to free-up original model (i.e. list was passed as reference) if model_state0['model'] and hasattr(model_state0['model'], 'cpu'): model_state0['model'].cpu() model_state0['model'] = None # try to free-up original tokenizer (i.e. list was passed as reference) if model_state0['tokenizer']: model_state0['tokenizer'] = None clear_torch_cache() chosen_model_state = model_state elif have_cli_model: # USE MODEL SETUP AT CLI assert isinstance(model_state['model'], (type(None), str)) # expect no fresh model chosen_model_state = model_state0 else: raise AssertionError(no_model_msg) # get variables model = chosen_model_state['model'] tokenizer = chosen_model_state['tokenizer'] device = chosen_model_state['device'] base_model = chosen_model_state['base_model'] tokenizer_base_model = chosen_model_state['tokenizer_base_model'] lora_weights = chosen_model_state['lora_weights'] inference_server = chosen_model_state['inference_server'] visible_models = chosen_model_state['visible_models'] # use overall key if have, so key for this gradio and any inner gradio if chosen_model_state['h2ogpt_key'] is not None: h2ogpt_key = chosen_model_state['h2ogpt_key'] # prefer use input from API over model state prompt_type = prompt_type or chosen_model_state['prompt_type'] prompt_dict = prompt_dict or chosen_model_state['prompt_dict'] if base_model is None: raise AssertionError(no_model_msg) assert base_model.strip(), no_model_msg assert model, "Model is missing" assert tokenizer, "Tokenizer is missing" # choose chat or non-chat mode if not chat: instruction = instruction_nochat iinput = iinput_nochat # in some cases, like lean nochat API, don't want to force sending prompt_type, allow default choice model_lower = base_model.lower() if not prompt_type and model_lower in inv_prompt_type_to_model_lower and prompt_type != 'custom': prompt_type = inv_prompt_type_to_model_lower[model_lower] if verbose: print("Auto-selecting prompt_type=%s for %s" % (prompt_type, model_lower), flush=True) assert prompt_type is not None, "prompt_type was None" # Control generation hyperparameters # adjust for bad inputs, e.g. in case also come from API that doesn't get constrained by gradio sliders # below is for TGI server, not required for HF transformers # limits are chosen similar to gradio_runner.py sliders/numbers top_p = min(max(1e-3, top_p), 1.0 - 1e-3) top_k = min(max(1, int(top_k)), 100) temperature = min(max(0.01, temperature), 2.0) # FIXME: https://github.com/h2oai/h2ogpt/issues/106 num_beams = 1 if stream_output else num_beams # See max_beams in gradio_runner max_max_new_tokens = get_max_max_new_tokens(chosen_model_state, memory_restriction_level=memory_restriction_level, max_new_tokens=max_new_tokens, max_max_new_tokens=max_max_new_tokens) if min_max_new_tokens is None: # default for nochat api min_max_new_tokens = 256 if docs_ordering_type is None: docs_ordering_type = 'reverse_ucurve_sort' model_max_length = get_model_max_length(chosen_model_state) max_new_tokens = min(max(1, int(max_new_tokens)), max_max_new_tokens) min_new_tokens = min(max(0, int(min_new_tokens)), max_new_tokens) max_time = min(max(0, max_time), max_max_time) repetition_penalty = min(max(0.01, repetition_penalty), 3.0) num_return_sequences = 1 if chat else min(max(1, int(num_return_sequences)), 10) min_top_k_docs, max_top_k_docs, label_top_k_docs = get_minmax_top_k_docs(is_public) # limit total tokens processed, e.g. for summarization, if public instance if is_public: total_tokens_for_docs = min(2 * model_max_length, 16384) else: total_tokens_for_docs = None top_k_docs = min(max(min_top_k_docs, int(top_k_docs)), max_top_k_docs) chunk_size = min(max(128, int(chunk_size)), 2048) if not context: context = '' # get prompter prompter = Prompter(prompt_type, prompt_dict, debug=debug, chat=chat, stream_output=stream_output, system_prompt=system_prompt) # THIRD PLACE where LangChain referenced, but imports only occur if enabled and have db to use assert langchain_mode in langchain_modes, "Invalid langchain_mode %s not in %s" % (langchain_mode, langchain_modes) assert langchain_action in langchain_actions, "Invalid langchain_action %s not in %s" % ( langchain_action, langchain_actions) assert len( set(langchain_agents).difference(langchain_agents_list)) == 0, "Invalid langchain_agents %s" % langchain_agents # get db, but also fill db state so return already has my_db_state and dbs filled so faster next query if langchain_mode != LangChainMode.DISABLED.value: from src.gpt_langchain import get_any_db db = get_any_db(my_db_state, langchain_mode, langchain_mode_paths, langchain_mode_types, dbs=dbs, load_db_if_exists=load_db_if_exists, db_type=db_type, use_openai_embedding=use_openai_embedding, hf_embedding_model=hf_embedding_model, migrate_embedding_model=migrate_embedding_model, auto_migrate_db=auto_migrate_db, for_sources_list=True, verbose=verbose, n_jobs=n_jobs, ) else: db = None t_generate = time.time() langchain_only_model = base_model in non_hf_types or \ load_exllama or \ inference_server.startswith('replicate') or \ inference_server.startswith('sagemaker') or \ inference_server.startswith('openai_azure_chat') or \ inference_server.startswith('openai_azure') do_langchain_path = langchain_mode not in [False, 'Disabled', 'LLM'] or \ langchain_only_model or \ force_langchain_evaluate or \ len(text_context_list) > 0 if len(langchain_agents) > 0: do_langchain_path = True if add_search_to_context: # easier to manage prompt etc. by doing full langchain path do_langchain_path = True if do_langchain_path: text = '' sources = '' response = '' # use smaller cut_distance for wiki_full since so many matches could be obtained, and often irrelevant unless close from gpt_langchain import run_qa_db gen_hyper_langchain = dict(do_sample=do_sample, temperature=temperature, repetition_penalty=repetition_penalty, top_k=top_k, top_p=top_p, num_beams=num_beams, min_new_tokens=min_new_tokens, max_new_tokens=max_new_tokens, early_stopping=early_stopping, max_time=max_time, num_return_sequences=num_return_sequences, ) loaders_dict, captions_model = gr_to_lg(image_loaders, pdf_loaders, url_loaders, captions_model=captions_model, ) loaders_dict.update(dict(captions_model=captions_model, caption_loader=caption_loader, doctr_loader=doctr_loader, pix2struct_loader=pix2struct_loader, jq_schema=jq_schema, )) data_point = dict(context=context, instruction=instruction, input=iinput) # no longer stuff chat history directly into context this early prompt_basic = prompter.generate_prompt(data_point, context_from_history=False) prompt = prompt_basic num_prompt_tokens = 0 for r in run_qa_db( inference_server=inference_server, model_name=base_model, model=model, tokenizer=tokenizer, langchain_only_model=langchain_only_model, async_output=async_output, num_async=num_async, prompter=prompter, use_llm_if_no_docs=use_llm_if_no_docs, load_db_if_exists=load_db_if_exists, db=db, langchain_mode_paths=langchain_mode_paths, langchain_mode_types=langchain_mode_types, detect_user_path_changes_every_query=detect_user_path_changes_every_query, cut_distance=1.1 if langchain_mode in ['wiki_full'] else cut_distance, answer_with_sources=answer_with_sources, append_sources_to_answer=append_sources_to_answer, add_chat_history_to_context=add_chat_history_to_context, add_search_to_context=add_search_to_context, keep_sources_in_context=keep_sources_in_context, memory_restriction_level=memory_restriction_level, system_prompt=system_prompt, use_openai_embedding=use_openai_embedding, use_openai_model=use_openai_model, hf_embedding_model=hf_embedding_model, migrate_embedding_model=migrate_embedding_model, auto_migrate_db=auto_migrate_db, first_para=first_para, text_limit=text_limit, show_accordions=show_accordions, top_k_docs_max_show=top_k_docs_max_show, show_link_in_sources=show_link_in_sources, # evaluate args items query=instruction, iinput=iinput, context=context, stream_output=stream_output, chunk=chunk, chunk_size=chunk_size, **loaders_dict, langchain_mode=langchain_mode, langchain_action=langchain_action, langchain_agents=langchain_agents, document_subset=document_subset, document_choice=document_choice, top_k_docs=top_k_docs, prompt_type=prompt_type, prompt_dict=prompt_dict, pre_prompt_query=pre_prompt_query, prompt_query=prompt_query, pre_prompt_summary=pre_prompt_summary, prompt_summary=prompt_summary, text_context_list=text_context_list, chat_conversation=chat_conversation, visible_models=visible_models, h2ogpt_key=h2ogpt_key, docs_ordering_type=docs_ordering_type, min_max_new_tokens=min_max_new_tokens, **gen_hyper_langchain, db_type=db_type, n_jobs=n_jobs, verbose=verbose, cli=cli, sanitize_bot_response=sanitize_bot_response, lora_weights=lora_weights, auto_reduce_chunks=auto_reduce_chunks, max_chunks=max_chunks, total_tokens_for_docs=total_tokens_for_docs, headsize=headsize, ): # doesn't accumulate, new answer every yield, so only save that full answer response = r['response'] sources = r['sources'] prompt = r['prompt'] num_prompt_tokens = r['num_prompt_tokens'] yield dict(response=response, sources=sources, save_dict=dict()) if save_dir: # estimate using tiktoken extra_dict = gen_hyper_langchain.copy() extra_dict.update(prompt_type=prompt_type, inference_server=inference_server, langchain_mode=langchain_mode, langchain_action=langchain_action, langchain_agents=langchain_agents, document_subset=document_subset, document_choice=document_choice, chat_conversation=chat_conversation, add_search_to_context=add_search_to_context, num_prompt_tokens=num_prompt_tokens, instruction=instruction, iinput=iinput, context=context, t_generate=time.time() - t_generate, ntokens=None, tokens_persecond=None, ) save_dict = dict(prompt=prompt, output=response, base_model=base_model, save_dir=save_dir, where_from='run_qa_db', extra_dict=extra_dict) yield dict(response=response, sources=sources, save_dict=save_dict) if verbose: print( 'Post-Generate Langchain: %s decoded_output: %s' % (str(datetime.now()), len(response) if response else -1), flush=True) if response or sources or langchain_only_model: # if got no response (e.g. not showing sources and got no sources, # so nothing to give to LLM), then slip through and ask LLM # Or if llama/gptj, then just return since they had no response and can't go down below code path # don't clear torch cache here, delays multi-generation, and bot(), all_bot(), and evaluate_nochat() do it return # NOT LANGCHAIN PATH, raw LLM # restrict instruction + , typically what has large input prompt, \ instruction, iinput, context, \ num_prompt_tokens, max_new_tokens, num_prompt_tokens0, num_prompt_tokens_actual, \ chat_index, top_k_docs_trial, one_doc_size = \ get_limited_prompt(instruction, iinput, tokenizer, prompter=prompter, inference_server=inference_server, # prompt_type=prompt_type, # prompt_dict=prompt_dict, # chat=chat, max_new_tokens=max_new_tokens, # system_prompt=system_prompt, context=context, chat_conversation=chat_conversation, keep_sources_in_context=keep_sources_in_context, model_max_length=model_max_length, memory_restriction_level=memory_restriction_level, langchain_mode=langchain_mode, add_chat_history_to_context=add_chat_history_to_context, min_max_new_tokens=min_max_new_tokens, ) if inference_server.startswith('vllm') or \ inference_server.startswith('openai') or \ inference_server.startswith('http'): if inference_server.startswith('vllm') or inference_server.startswith('openai'): assert not inference_server.startswith('openai_azure_chat'), "Not fo Azure, use langchain path" assert not inference_server.startswith('openai_azure'), "Not for Azure, use langchain path" openai, inf_type, deployment_name, base_url, api_version = set_openai(inference_server) where_from = inf_type terminate_response = prompter.terminate_response or [] stop_sequences = list(set(terminate_response + [prompter.PreResponse])) stop_sequences = [x for x in stop_sequences if x] # OpenAI will complain if ask for too many new tokens, takes it as min in some sense, wrongly so. max_new_tokens_openai = min(max_new_tokens, model_max_length - num_prompt_tokens) gen_server_kwargs = dict(temperature=temperature if do_sample else 0, max_tokens=max_new_tokens_openai, top_p=top_p if do_sample else 1, frequency_penalty=0, n=num_return_sequences, presence_penalty=1.07 - repetition_penalty + 0.6, # so good default ) if inf_type == 'vllm' or inference_server == 'openai': responses = openai.Completion.create( model=base_model, prompt=prompt, **gen_server_kwargs, stop=stop_sequences, stream=stream_output, ) text = '' sources = '' response = '' if not stream_output: text = responses['choices'][0]['text'] response = prompter.get_response(prompt + text, prompt=prompt, sanitize_bot_response=sanitize_bot_response) yield dict(response=response, sources=sources, save_dict=dict()) else: collected_events = [] for event in responses: collected_events.append(event) # save the event response event_text = event['choices'][0]['text'] # extract the text text += event_text # append the text response = prompter.get_response(prompt + text, prompt=prompt, sanitize_bot_response=sanitize_bot_response) yield dict(response=response, sources=sources, save_dict=dict()) elif inf_type == 'vllm_chat' or inference_server == 'openai_chat': if inf_type == 'vllm_chat': raise NotImplementedError('%s not supported by vLLM' % inf_type) if system_prompt in [None, 'None', 'auto']: openai_system_prompt = "You are a helpful assistant." else: openai_system_prompt = system_prompt messages0 = [] if openai_system_prompt: messages0.append({"role": "system", "content": openai_system_prompt}) messages0.append({'role': 'user', 'content': prompt}) responses = openai.ChatCompletion.create( model=base_model, messages=messages0, stream=stream_output, **gen_server_kwargs, ) text = "" sources = '' response = "" if not stream_output: text = responses["choices"][0]["message"]["content"] response = prompter.get_response(prompt + text, prompt=prompt, sanitize_bot_response=sanitize_bot_response) yield dict(response=response, sources=sources, save_dict=dict()) else: for chunk in responses: delta = chunk["choices"][0]["delta"] if 'content' in delta: text += delta['content'] response = prompter.get_response(prompt + text, prompt=prompt, sanitize_bot_response=sanitize_bot_response) yield dict(response=response, sources=sources, save_dict=dict()) else: raise RuntimeError("No such OpenAI mode: %s" % inference_server) elif inference_server.startswith('http'): inference_server, headers = get_hf_server(inference_server) from gradio_utils.grclient import GradioClient from text_generation import Client as HFClient if isinstance(model, GradioClient): gr_client = model hf_client = None elif isinstance(model, HFClient): gr_client = None hf_client = model else: inference_server, gr_client, hf_client = get_client_from_inference_server(inference_server, base_model=base_model) # quick sanity check to avoid long timeouts, just see if can reach server requests.get(inference_server, timeout=int(os.getenv('REQUEST_TIMEOUT_FAST', '10'))) if gr_client is not None: # Note: h2oGPT gradio server could handle input token size issues for prompt, # but best to handle here so send less data to server chat_client = False where_from = "gr_client" client_langchain_mode = 'Disabled' client_add_chat_history_to_context = True client_add_search_to_context = False client_langchain_action = LangChainAction.QUERY.value client_langchain_agents = [] gen_server_kwargs = dict(temperature=temperature, top_p=top_p, top_k=top_k, num_beams=num_beams, max_new_tokens=max_new_tokens, min_new_tokens=min_new_tokens, early_stopping=early_stopping, max_time=max_time, repetition_penalty=repetition_penalty, num_return_sequences=num_return_sequences, do_sample=do_sample, chat=chat_client, ) # account for gradio into gradio that handles prompting, avoid duplicating prompter prompt injection if prompt_type in [None, '', PromptType.plain.name, PromptType.plain.value, str(PromptType.plain.value)]: # if our prompt is plain, assume either correct or gradio server knows different prompt type, # so pass empty prompt_Type gr_prompt_type = '' gr_prompt_dict = '' gr_prompt = prompt # already prepared prompt gr_context = '' gr_iinput = '' else: # if already have prompt_type that is not plain, None, or '', then already applied some prompting # But assume server can handle prompting, and need to avoid double-up. # Also assume server can do better job of using stopping.py to stop early, so avoid local prompting, let server handle # So avoid "prompt" and let gradio server reconstruct from prompt_type we passed # Note it's ok that prompter.get_response() has prompt+text, prompt=prompt passed, # because just means extra processing and removal of prompt, but that has no human-bot prompting doesn't matter # since those won't appear gr_context = context gr_prompt = instruction gr_iinput = iinput gr_prompt_type = prompt_type gr_prompt_dict = prompt_dict client_kwargs = dict(instruction=gr_prompt if chat_client else '', # only for chat=True iinput=gr_iinput, # only for chat=True context=gr_context, # streaming output is supported, loops over and outputs each generation in streaming mode # but leave stream_output=False for simple input/output mode stream_output=stream_output, **gen_server_kwargs, prompt_type=gr_prompt_type, prompt_dict=gr_prompt_dict, instruction_nochat=gr_prompt if not chat_client else '', iinput_nochat=gr_iinput, # only for chat=False langchain_mode=client_langchain_mode, add_chat_history_to_context=client_add_chat_history_to_context, langchain_action=client_langchain_action, langchain_agents=client_langchain_agents, top_k_docs=top_k_docs, chunk=chunk, chunk_size=chunk_size, document_subset=DocumentSubset.Relevant.name, document_choice=[DocumentChoice.ALL.value], pre_prompt_query=pre_prompt_query, prompt_query=prompt_query, pre_prompt_summary=pre_prompt_summary, prompt_summary=prompt_summary, system_prompt=system_prompt, image_loaders=image_loaders, pdf_loaders=pdf_loaders, url_loaders=url_loaders, jq_schema=jq_schema, visible_models=visible_models, h2ogpt_key=h2ogpt_key, add_search_to_context=client_add_search_to_context, docs_ordering_type=None, min_max_new_tokens=min_max_new_tokens, ) api_name = '/submit_nochat_api' # NOTE: like submit_nochat but stable API for string dict passing response = '' text = '' sources = '' if not stream_output: res = gr_client.predict(str(dict(client_kwargs)), api_name=api_name) res_dict = ast.literal_eval(res) text = res_dict['response'] sources = res_dict['sources'] response = prompter.get_response(prompt + text, prompt=prompt, sanitize_bot_response=sanitize_bot_response) yield dict(response=response, sources=sources, save_dict=dict()) else: job = gr_client.submit(str(dict(client_kwargs)), api_name=api_name) res_dict = dict(response=text, sources=sources, save_dict=dict()) text0 = '' while not job.done(): if job.communicator.job.latest_status.code.name == 'FINISHED': break e = job.future._exception if e is not None: break outputs_list = job.communicator.job.outputs if outputs_list: res = job.communicator.job.outputs[-1] res_dict = ast.literal_eval(res) text = res_dict['response'] sources = res_dict['sources'] if gr_prompt_type == 'plain': # then gradio server passes back full prompt + text prompt_and_text = text else: prompt_and_text = prompt + text response = prompter.get_response(prompt_and_text, prompt=prompt, sanitize_bot_response=sanitize_bot_response) text_chunk = response[len(text0):] if not text_chunk: continue # save old text0 = response yield dict(response=response, sources=sources, save_dict=dict()) time.sleep(0.01) # ensure get last output to avoid race res_all = job.outputs() if len(res_all) > 0: res = res_all[-1] res_dict = ast.literal_eval(res) text = res_dict['response'] sources = res_dict['sources'] else: # go with old text if last call didn't work e = job.future._exception if e is not None: stre = str(e) strex = ''.join(traceback.format_tb(e.__traceback__)) else: stre = '' strex = '' print("Bad final response: %s %s %s %s %s: %s %s" % (base_model, inference_server, res_all, prompt, text, stre, strex), flush=True) if gr_prompt_type == 'plain': # then gradio server passes back full prompt + text prompt_and_text = text else: prompt_and_text = prompt + text response = prompter.get_response(prompt_and_text, prompt=prompt, sanitize_bot_response=sanitize_bot_response) yield dict(response=response, sources=sources, save_dict=dict()) elif hf_client: # HF inference server needs control over input tokens where_from = "hf_client" response = '' extra = '' sources = '' # prompt must include all human-bot like tokens, already added by prompt # https://github.com/huggingface/text-generation-inference/tree/main/clients/python#types terminate_response = prompter.terminate_response or [] stop_sequences = list(set(terminate_response + [prompter.PreResponse])) stop_sequences = [x for x in stop_sequences if x] gen_server_kwargs = dict(do_sample=do_sample, max_new_tokens=max_new_tokens, # best_of=None, repetition_penalty=repetition_penalty, return_full_text=False, seed=SEED, stop_sequences=stop_sequences, temperature=temperature, top_k=top_k, top_p=top_p, # truncate=False, # behaves oddly # typical_p=top_p, # watermark=False, # decoder_input_details=False, ) # work-around for timeout at constructor time, will be issue if multi-threading, # so just do something reasonable or max_time if larger # lower bound because client is re-used if multi-threading hf_client.timeout = max(300, max_time) if not stream_output: text = hf_client.generate(prompt, **gen_server_kwargs).generated_text response = prompter.get_response(prompt + text, prompt=prompt, sanitize_bot_response=sanitize_bot_response) yield dict(response=response, sources=sources, save_dict=dict()) else: text = "" for responses in hf_client.generate_stream(prompt, **gen_server_kwargs): if not responses.token.special: # stop_sequences text_chunk = responses.token.text text += text_chunk response = prompter.get_response(prompt + text, prompt=prompt, sanitize_bot_response=sanitize_bot_response) sources = '' yield dict(response=response, sources=sources, save_dict=dict()) else: raise RuntimeError("Failed to get client: %s" % inference_server) else: raise RuntimeError("No such inference_server %s" % inference_server) if save_dir and text: # save prompt + new text extra_dict = gen_server_kwargs.copy() extra_dict.update(dict(inference_server=inference_server, num_prompt_tokens=num_prompt_tokens, t_generate=time.time() - t_generate, ntokens=None, tokens_persecond=None, )) save_dict = dict(prompt=prompt, output=text, base_model=base_model, save_dir=save_dir, where_from=where_from, extra_dict=extra_dict) yield dict(response=response, sources=sources, save_dict=save_dict) return else: assert not inference_server, "inference_server=%s not supported" % inference_server if isinstance(tokenizer, str): # pipeline if tokenizer == "summarization": key = 'summary_text' else: raise RuntimeError("No such task type %s" % tokenizer) # NOTE: uses max_length only sources = '' yield dict(response=model(prompt, max_length=max_new_tokens)[0][key], sources=sources, save_dict=dict()) if 'mbart-' in base_model.lower(): assert src_lang is not None tokenizer.src_lang = languages_covered()[src_lang] stopping_criteria = get_stopping(prompt_type, prompt_dict, tokenizer, device, base_model, model_max_length=model_max_length, prompter=prompter) inputs = tokenizer(prompt, return_tensors="pt") if debug and len(inputs["input_ids"]) > 0: print('input_ids length', len(inputs["input_ids"][0]), flush=True) input_ids = inputs["input_ids"].to(device) # CRITICAL LIMIT else will fail max_max_tokens = tokenizer.model_max_length max_input_tokens = max(0, int(max_max_tokens - min_new_tokens)) # NOTE: Don't limit up front due to max_new_tokens, let go up to max or reach max_max_tokens in stopping.py assert isinstance(max_input_tokens, int), "Bad type for max_input_tokens=%s %s" % ( max_input_tokens, type(max_input_tokens)) input_ids = input_ids[:, -max_input_tokens:] # required for falcon if multiple threads or asyncio accesses to model during generation if use_cache is None: use_cache = False if 'falcon' in base_model else True gen_config_kwargs = dict(num_beams=num_beams, do_sample=do_sample, repetition_penalty=float(repetition_penalty), num_return_sequences=num_return_sequences, renormalize_logits=True, remove_invalid_values=True, use_cache=use_cache, ) if do_sample: gen_config_kwargs.update(dict(temperature=float(temperature), top_p=float(top_p), top_k=top_k)) if True: # unclear impact, some odd things going on inside # leads to: # The attention mask and the pad token id were not set. As a consequence, you may observe unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results. # Setting `pad_token_id` to `eos_token_id`:2 for open-end generation. # or leads to: # Using cls_token, but it is not set yet. # Using mask_token, but it is not set yet. # Using pad_token, but it is not set yet. # Using sep_token, but it is not set yet. token_ids = ['eos_token_id', 'pad_token_id', 'bos_token_id', 'cls_token_id', 'sep_token_id'] for token_id in token_ids: if hasattr(tokenizer, token_id) and getattr(tokenizer, token_id) is not None: gen_config_kwargs.update({token_id: getattr(tokenizer, token_id)}) generation_config = GenerationConfig(**gen_config_kwargs) gen_kwargs = dict(input_ids=input_ids, generation_config=generation_config, return_dict_in_generate=True, output_scores=True, max_new_tokens=max_new_tokens, # prompt + new min_new_tokens=min_new_tokens, # prompt + new early_stopping=early_stopping, # False, True, "never" max_time=max_time, stopping_criteria=stopping_criteria, ) if 'gpt2' in base_model.lower(): gen_kwargs.update(dict(bos_token_id=tokenizer.bos_token_id, pad_token_id=tokenizer.eos_token_id)) elif 'mbart-' in base_model.lower(): assert tgt_lang is not None tgt_lang = languages_covered()[tgt_lang] gen_kwargs.update(dict(forced_bos_token_id=tokenizer.lang_code_to_id[tgt_lang])) else: token_ids = ['eos_token_id', 'bos_token_id', 'pad_token_id'] for token_id in token_ids: if hasattr(tokenizer, token_id) and getattr(tokenizer, token_id) is not None: gen_kwargs.update({token_id: getattr(tokenizer, token_id)}) decoder_kwargs = dict(skip_special_tokens=True, clean_up_tokenization_spaces=True) decoder = functools.partial(tokenizer.decode, **decoder_kwargs ) with torch.no_grad(): have_lora_weights = lora_weights not in [no_lora_str, '', None] context_class_cast = NullContext if device == 'cpu' or have_lora_weights or device == 'mps' else torch.autocast if t5_type(base_model): # issues when casting to float16, can mess up t5 model, e.g. only when not streaming, or other odd behaviors context_class_cast = NullContext with context_class_cast(device): # protection for gradio not keeping track of closed users, # else hit bitsandbytes lack of thread safety: # https://github.com/h2oai/h2ogpt/issues/104 # but only makes sense if concurrency_count == 1 context_class = NullContext # if concurrency_count > 1 else filelock.FileLock if verbose: print('Pre-Generate: %s' % str(datetime.now()), flush=True) decoded_output = None response = '' with context_class("generate.lock"): if verbose: print('Generate: %s' % str(datetime.now()), flush=True) always_use_streaming_method = True # to deal with complex parsing of prompt vs. generation due to odd tokenizing if stream_output or always_use_streaming_method: skip_prompt = True # True means first output excludes prompt streamer = H2OTextIteratorStreamer(tokenizer, skip_prompt=skip_prompt, block=False, **decoder_kwargs) gen_kwargs.update(dict(streamer=streamer)) target = wrapped_partial(generate_with_exceptions, model.generate, raise_generate_gpu_exceptions=raise_generate_gpu_exceptions, **gen_kwargs) bucket = queue.Queue() thread = EThread(target=target, streamer=streamer, bucket=bucket) thread.start() ret = dict(response='', sources='', save_dict=dict()) outputs = "" sources = '' try: for new_text in streamer: if bucket.qsize() > 0 or thread.exc: thread.join() outputs += new_text response = prompter.get_response(outputs, prompt=None, only_new_text=True, sanitize_bot_response=sanitize_bot_response) ret = dict(response=response, sources=sources, save_dict=dict()) if stream_output: yield ret if not stream_output: yield ret except BaseException: # if any exception, raise that exception if was from thread, first if thread.exc: raise thread.exc raise finally: # don't clear torch cache here, delays multi-generation, and bot(), all_bot(), and evaluate_nochat() do it # in case no exception and didn't join with thread yet, then join if not thread.exc: thread.join() # in case raise StopIteration or broke queue loop in streamer, but still have exception if thread.exc: raise thread.exc decoded_output = outputs ntokens = len(outputs) // 4 # hack for now else: # below length removal doesn't work in general, because encoding does not match internal of model generation input_ids_len = gen_kwargs['input_ids'][0].shape[0] try: outputs = model.generate(**gen_kwargs) finally: pass # don't clear torch cache here, delays multi-generation, and bot(), all_bot(), and evaluate_nochat() do it # skip first IDs ntokens = sum([len(s) - input_ids_len for s in outputs.sequences]) if save_dir else -1 outputs = [decoder(s[input_ids_len:]) for s in outputs.sequences] sources = '' response = prompter.get_response(outputs, prompt=None, only_new_text=True, sanitize_bot_response=sanitize_bot_response) yield dict(response=response, sources=sources, save_dict=dict()) if outputs and len(outputs) >= 1: decoded_output = prompt + outputs[0] if save_dir and decoded_output: extra_dict = gen_config_kwargs.copy() extra_dict.update(dict(num_prompt_tokens=num_prompt_tokens, t_generate=time.time() - t_generate, ntokens=ntokens, tokens_persecond=ntokens / (time.time() - t_generate), )) save_dict = dict(prompt=prompt, output=decoded_output, base_model=base_model, save_dir=save_dir, where_from="evaluate_%s" % str(stream_output), extra_dict=extra_dict) yield dict(response=response, sources=sources, save_dict=save_dict) if verbose: print('Post-Generate: %s decoded_output: %s' % ( str(datetime.now()), len(decoded_output) if decoded_output else -1), flush=True) inputs_list_names = list(inspect.signature(evaluate).parameters) state_names = input_args_list.copy() # doesn't have to be the same, but state_names must match evaluate() and how filled then inputs_kwargs_list = [x for x in inputs_list_names if x not in eval_func_param_names + state_names] def get_cutoffs(memory_restriction_level, for_context=False, model_max_length=2048): # help to avoid errors like: # RuntimeError: The size of tensor a (2048) must match the size of tensor b (2049) at non-singleton dimension 3 # RuntimeError: expected scalar type Half but found Float # with - 256 if memory_restriction_level > 0: max_length_tokenize = 768 - 256 if memory_restriction_level <= 2 else 512 - 256 else: # at least give room for 1 paragraph output max_length_tokenize = model_max_length - 256 cutoff_len = max_length_tokenize * 4 # if reaches limit, then can't generate new tokens output_smallest = 30 * 4 max_prompt_length = cutoff_len - output_smallest if for_context: # then lower even more to avoid later chop, since just estimate tokens in context bot max_prompt_length = max(64, int(max_prompt_length * 0.8)) return cutoff_len, output_smallest, max_length_tokenize, max_prompt_length class H2OTextIteratorStreamer(TextIteratorStreamer): """ normally, timeout required for now to handle exceptions, else get() but with H2O version of TextIteratorStreamer, loop over block to handle """ def __init__(self, tokenizer, skip_prompt: bool = False, timeout: typing.Optional[float] = None, block=True, **decode_kwargs): super().__init__(tokenizer, skip_prompt, **decode_kwargs) self.text_queue = queue.Queue() self.stop_signal = None self.do_stop = False self.timeout = timeout self.block = block def on_finalized_text(self, text: str, stream_end: bool = False): """Put the new text in the queue. If the stream is ending, also put a stop signal in the queue.""" self.text_queue.put(text, timeout=self.timeout) if stream_end: self.text_queue.put(self.stop_signal, timeout=self.timeout) def __iter__(self): return self def __next__(self): while True: try: value = self.stop_signal # value looks unused in pycharm, not true if self.do_stop: print("hit stop", flush=True) # could raise or break, maybe best to raise and make parent see if any exception in thread self.clear_queue() self.do_stop = False raise StopIteration() # break value = self.text_queue.get(block=self.block, timeout=self.timeout) break except queue.Empty: time.sleep(0.01) if value == self.stop_signal: self.clear_queue() self.do_stop = False raise StopIteration() else: return value def clear_queue(self): # make sure streamer is reusable after stop hit with self.text_queue.mutex: self.text_queue.queue.clear() def put(self, value): """ Receives tokens, decodes them, and prints them to stdout as soon as they form entire words. # same as base class, except remove hack w.r.t. text.rfind(" ") that ruins LLaMa2 """ if len(value.shape) > 1 and value.shape[0] > 1: raise ValueError("TextStreamer only supports batch size 1") elif len(value.shape) > 1: value = value[0] if self.skip_prompt and self.next_tokens_are_prompt: self.next_tokens_are_prompt = False return # Add the new token to the cache and decodes the entire thing. self.token_cache.extend(value.tolist()) text = self.tokenizer.decode(self.token_cache, **self.decode_kwargs) # After the symbol for a new line, we flush the cache. if text.endswith("\n"): printable_text = text[self.print_len:] self.token_cache = [] self.print_len = 0 # If the last token is a CJK character, we print the characters. elif len(text) > 0 and self._is_chinese_char(ord(text[-1])): printable_text = text[self.print_len:] self.print_len += len(printable_text) # Otherwise, prints until the last space char (simple heuristic to avoid printing incomplete words, # which may change with the subsequent token -- there are probably smarter ways to do this!) elif len(text) > 0 and text[-1] == '�': printable_text = text[self.print_len: text.rfind(" ") + 1] self.print_len += len(printable_text) else: printable_text = text[self.print_len:] self.print_len += len(printable_text) self.on_finalized_text(printable_text) def generate_with_exceptions(func, *args, raise_generate_gpu_exceptions=True, **kwargs): try: func(*args, **kwargs) except torch.cuda.OutOfMemoryError as e: print("GPU OOM 2: exception: %s" % str(e), flush=True) if 'input_ids' in kwargs: if kwargs['input_ids'] is not None: kwargs['input_ids'].cpu() kwargs['input_ids'] = None traceback.print_exc() clear_torch_cache() return except (Exception, RuntimeError) as e: if 'Expected all tensors to be on the same device' in str(e) or \ 'expected scalar type Half but found Float' in str(e) or \ 'probability tensor contains either' in str(e) or \ 'cublasLt ran into an error!' in str(e) or \ 'mat1 and mat2 shapes cannot be multiplied' in str(e): print( "GPU Error: exception: %s" % str(e), flush=True) traceback.print_exc() clear_torch_cache() if raise_generate_gpu_exceptions: raise return else: clear_torch_cache() if raise_generate_gpu_exceptions: raise def get_generate_params(model_lower, chat, stream_output, show_examples, prompt_type, prompt_dict, system_prompt, pre_prompt_query, prompt_query, pre_prompt_summary, prompt_summary, temperature, top_p, top_k, num_beams, max_new_tokens, min_new_tokens, early_stopping, max_time, repetition_penalty, num_return_sequences, do_sample, top_k_docs, chunk, chunk_size, image_loaders, pdf_loaders, url_loaders, jq_schema, docs_ordering_type, min_max_new_tokens, verbose, ): use_defaults = False use_default_examples = True examples = [] task_info = 'LLM' if model_lower: print(f"Using Model {model_lower}", flush=True) else: if verbose: print("No model defined yet", flush=True) min_new_tokens = min_new_tokens if min_new_tokens is not None else 0 early_stopping = early_stopping if early_stopping is not None else False max_time_defaults = 60 * 3 max_time = max_time if max_time is not None else max_time_defaults if not prompt_type and model_lower in inv_prompt_type_to_model_lower and prompt_type != 'custom': prompt_type = inv_prompt_type_to_model_lower[model_lower] if verbose: print("Auto-selecting prompt_type=%s for %s" % (prompt_type, model_lower), flush=True) # examples at first don't include chat, instruction_nochat, iinput_nochat, added at end if show_examples is None: if chat: show_examples = False else: show_examples = True summarize_example1 = """Jeff: Can I train a ? Transformers model on Amazon SageMaker? Philipp: Sure you can use the new Hugging Face Deep Learning Container. Jeff: ok. Jeff: and how can I get started? Jeff: where can I find documentation? Philipp: ok, ok you can find everything here. https://huggingface.co/blog/the-partnership-amazon-sagemaker-and-hugging-face""" use_placeholder_instruction_as_example = False if 'bart-large-cnn-samsum' in model_lower or 'flan-t5-base-samsum' in model_lower: placeholder_instruction = summarize_example1 placeholder_input = "" use_defaults = True use_default_examples = False use_placeholder_instruction_as_example = True task_info = "Summarization" elif 't5-' in model_lower or 't5' == model_lower or 'flan-' in model_lower: placeholder_instruction = "The square root of x is the cube root of y. What is y to the power of 2, if x = 4?" placeholder_input = "" use_defaults = True use_default_examples = True task_info = "Multi-Task: Q/A, translation, Chain-of-Thought, Logical Reasoning, Summarization, etc. Best to use task prefix as trained on, e.g. `translate English to German: ` (space after colon)" elif 'mbart-' in model_lower: placeholder_instruction = "The girl has long hair." placeholder_input = "" use_defaults = True use_default_examples = False use_placeholder_instruction_as_example = True elif 'gpt2' in model_lower: placeholder_instruction = "The sky is" placeholder_input = "" prompt_type = prompt_type or 'plain' use_default_examples = True # some will be odd "continuations" but can be ok use_placeholder_instruction_as_example = True task_info = "Auto-complete phrase, code, etc." use_defaults = True else: if chat: placeholder_instruction = "" else: placeholder_instruction = "Give detailed answer for whether Einstein or Newton is smarter." placeholder_input = "" if not prompt_type and model_lower in inv_prompt_type_to_model_lower and prompt_type != 'custom': prompt_type = inv_prompt_type_to_model_lower[model_lower] elif model_lower: # default is plain, because might rely upon trust_remote_code to handle prompting prompt_type = prompt_type or 'plain' else: prompt_type = '' task_info = "No task" if prompt_type == 'instruct': task_info = "Answer question or follow imperative as instruction with optionally input." elif prompt_type == 'plain': task_info = "Auto-complete phrase, code, etc." elif prompt_type == 'human_bot': if chat: task_info = "Chat (Shift-Enter to give question/imperative, input concatenated with instruction)" else: task_info = "Ask question/imperative (input concatenated with instruction)" # revert to plain if still nothing prompt_type = prompt_type or 'plain' if use_defaults: temperature = 1.0 if temperature is None else temperature top_p = 1.0 if top_p is None else top_p top_k = 40 if top_k is None else top_k num_beams = num_beams or 1 max_new_tokens = max_new_tokens or 512 repetition_penalty = repetition_penalty or 1.07 num_return_sequences = min(num_beams, num_return_sequences or 1) do_sample = False if do_sample is None else do_sample else: temperature = 0.1 if temperature is None else temperature top_p = 0.75 if top_p is None else top_p top_k = 40 if top_k is None else top_k num_beams = num_beams or 1 max_new_tokens = max_new_tokens or 1024 repetition_penalty = repetition_penalty or 1.07 num_return_sequences = min(num_beams, num_return_sequences or 1) do_sample = False if do_sample is None else do_sample # doesn't include chat, instruction_nochat, iinput_nochat, added later params_list = ["", stream_output, prompt_type, prompt_dict, temperature, top_p, top_k, num_beams, max_new_tokens, min_new_tokens, early_stopping, max_time, repetition_penalty, num_return_sequences, do_sample] if use_placeholder_instruction_as_example: examples += [[placeholder_instruction, ''] + params_list] if use_default_examples: examples += [ ["Translate English to French", "Good morning"] + params_list, ["Give detailed answer for whether Einstein or Newton is smarter.", ''] + params_list, ["Explain in detailed list, all the best practices for coding in python.", ''] + params_list, [ "Create a markdown table with 3 rows for the primary colors, and 2 columns, with color name and hex codes.", ''] + params_list, ['Translate to German: My name is Arthur', ''] + params_list, ["Please answer to the following question. Who is going to be the next Ballon d'or?", ''] + params_list, ['Can Geoffrey Hinton have a conversation with George Washington? Give the rationale before answering.', ''] + params_list, ['Please answer the following question. What is the boiling point of Nitrogen?', ''] + params_list, ['Answer the following yes/no question. Can you write a whole Haiku in a single tweet?', ''] + params_list, ["Simplify the following expression: (False or False and True). Explain your answer.", ''] + params_list, [ "Premise: At my age you will probably have learnt one lesson. Hypothesis: It's not certain how many lessons you'll learn by your thirties. Does the premise entail the hypothesis?", ''] + params_list, ['The square root of x is the cube root of y. What is y to the power of 2, if x = 4?', ''] + params_list, [ 'Answer the following question by reasoning step by step. The cafeteria had 23 apples. If they used 20 for lunch, and bought 6 more, how many apple do they have?', ''] + params_list, ["""def area_of_rectangle(a: float, b: float): \"\"\"Return the area of the rectangle.\"\"\"""", ''] + params_list, ["""# a function in native python: def mean(a): return sum(a)/len(a) # the same function using numpy: import numpy as np def mean(a):""", ''] + params_list, ["""X = np.random.randn(100, 100) y = np.random.randint(0, 1, 100) # fit random forest classifier with 20 estimators""", ''] + params_list, ] # add summary example examples += [ [summarize_example1, 'Summarize' if prompt_type not in ['plain', 'instruct_simple'] else ''] + params_list] src_lang = "English" tgt_lang = "Russian" # move to correct position for example in examples: example += [chat, '', '', LangChainMode.DISABLED.value, True, LangChainAction.QUERY.value, [], top_k_docs, chunk, chunk_size, DocumentSubset.Relevant.name, [], pre_prompt_query, prompt_query, pre_prompt_summary, prompt_summary, system_prompt, image_loaders, pdf_loaders, url_loaders, jq_schema, None, None, False, None, None, docs_ordering_type, min_max_new_tokens, ] # adjust examples if non-chat mode if not chat: example[eval_func_param_names.index('instruction_nochat')] = example[ eval_func_param_names.index('instruction')] example[eval_func_param_names.index('instruction')] = '' example[eval_func_param_names.index('iinput_nochat')] = example[eval_func_param_names.index('iinput')] example[eval_func_param_names.index('iinput')] = '' assert len(example) == len(eval_func_param_names), "Wrong example: %s %s" % ( len(example), len(eval_func_param_names)) if prompt_type == PromptType.custom.name and not prompt_dict: raise ValueError("Unexpected to get non-empty prompt_dict=%s for prompt_type=%s" % (prompt_dict, prompt_type)) # get prompt_dict from prompt_type, so user can see in UI etc., or for custom do nothing except check format prompt_dict, error0 = get_prompt(prompt_type, prompt_dict, chat=False, context='', reduced=False, making_context=False, return_dict=True, system_prompt=system_prompt) if error0: raise RuntimeError("Prompt wrong: %s" % error0) return placeholder_instruction, placeholder_input, \ stream_output, show_examples, \ prompt_type, prompt_dict, \ temperature, top_p, top_k, num_beams, \ max_new_tokens, min_new_tokens, early_stopping, max_time, \ repetition_penalty, num_return_sequences, \ do_sample, \ src_lang, tgt_lang, \ examples, \ task_info def languages_covered(): # https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt#languages-covered covered = """Arabic (ar_AR), Czech (cs_CZ), German (de_DE), English (en_XX), Spanish (es_XX), Estonian (et_EE), Finnish (fi_FI), French (fr_XX), Gujarati (gu_IN), Hindi (hi_IN), Italian (it_IT), Japanese (ja_XX), Kazakh (kk_KZ), Korean (ko_KR), Lithuanian (lt_LT), Latvian (lv_LV), Burmese (my_MM), Nepali (ne_NP), Dutch (nl_XX), Romanian (ro_RO), Russian (ru_RU), Sinhala (si_LK), Turkish (tr_TR), Vietnamese (vi_VN), Chinese (zh_CN), Afrikaans (af_ZA), Azerbaijani (az_AZ), Bengali (bn_IN), Persian (fa_IR), Hebrew (he_IL), Croatian (hr_HR), Indonesian (id_ID), Georgian (ka_GE), Khmer (km_KH), Macedonian (mk_MK), Malayalam (ml_IN), Mongolian (mn_MN), Marathi (mr_IN), Polish (pl_PL), Pashto (ps_AF), Portuguese (pt_XX), Swedish (sv_SE), Swahili (sw_KE), Tamil (ta_IN), Telugu (te_IN), Thai (th_TH), Tagalog (tl_XX), Ukrainian (uk_UA), Urdu (ur_PK), Xhosa (xh_ZA), Galician (gl_ES), Slovene (sl_SI)""" covered = covered.split(', ') covered = {x.split(' ')[0]: x.split(' ')[1].replace(')', '').replace('(', '') for x in covered} return covered def score_qa(smodel, stokenizer, max_length_tokenize, question, answer, cutoff_len): question = question[-cutoff_len:] answer = answer[-cutoff_len:] inputs = stokenizer(question, answer, return_tensors="pt", truncation=True, max_length=max_length_tokenize).to(smodel.device) try: score = torch.sigmoid(smodel(**inputs.to(smodel.device)).logits[0].float()).cpu().detach().numpy()[0] except torch.cuda.OutOfMemoryError as e: print("GPU OOM 3: question: %s answer: %s exception: %s" % (question, answer, str(e)), flush=True) del inputs traceback.print_exc() clear_torch_cache() return 'Response Score: GPU OOM' except (Exception, RuntimeError) as e: if 'Expected all tensors to be on the same device' in str(e) or \ 'expected scalar type Half but found Float' in str(e) or \ 'probability tensor contains either' in str(e) or \ 'cublasLt ran into an error!' in str(e) or \ 'device-side assert triggered' in str(e): print("GPU Error: question: %s answer: %s exception: %s" % (question, answer, str(e)), flush=True) traceback.print_exc() clear_torch_cache() return 'Response Score: GPU Error' else: raise os.environ['TOKENIZERS_PARALLELISM'] = 'true' return score def check_locals(**kwargs): # ensure everything in evaluate is here can_skip_because_locally_generated = no_default_param_names + [ # get_model: 'reward_type' ] for k in eval_func_param_names: if k in can_skip_because_locally_generated: continue assert k in kwargs, "Missing %s" % k for k in inputs_kwargs_list: if k in can_skip_because_locally_generated: continue assert k in kwargs, "Missing %s" % k for k in list(inspect.signature(get_model).parameters): if k in can_skip_because_locally_generated: continue assert k in kwargs, "Missing %s" % k def get_model_max_length(model_state): if not isinstance(model_state['tokenizer'], (str, type(None))): return model_state['tokenizer'].model_max_length else: return 2048 def get_max_max_new_tokens(model_state, **kwargs): if not isinstance(model_state['tokenizer'], (str, type(None))): max_max_new_tokens = model_state['tokenizer'].model_max_length else: max_max_new_tokens = None if kwargs['max_max_new_tokens'] is not None and max_max_new_tokens is not None: return min(max_max_new_tokens, kwargs['max_max_new_tokens']) elif kwargs['max_max_new_tokens'] is not None: return kwargs['max_max_new_tokens'] elif kwargs['memory_restriction_level'] == 1: return 768 elif kwargs['memory_restriction_level'] == 2: return 512 elif kwargs['memory_restriction_level'] >= 3: return 256 else: # FIXME: Need to update after new model loaded, so user can control with slider return 2048 def get_minmax_top_k_docs(is_public): if is_public: min_top_k_docs = 1 max_top_k_docs = 8 label_top_k_docs = "Number of document chunks" else: min_top_k_docs = -1 max_top_k_docs = 100 label_top_k_docs = "Number of document chunks (-1 = auto fill model context)" return min_top_k_docs, max_top_k_docs, label_top_k_docs def merge_chat_conversation_history(chat_conversation1, history): # chat_conversation and history ordered so largest index of list is most recent if chat_conversation1: chat_conversation1 = str_to_list(chat_conversation1) for conv1 in chat_conversation1: assert isinstance(conv1, (list, tuple)) assert len(conv1) == 2 if isinstance(history, list): # make copy so only local change if chat_conversation1: # so priority will be newest that comes from actual chat history from UI, then chat_conversation history = chat_conversation1 + history.copy() elif chat_conversation1: history = chat_conversation1 else: history = [] return history def history_to_context(history, langchain_mode=None, add_chat_history_to_context=None, prompt_type=None, prompt_dict=None, chat=None, model_max_length=None, memory_restriction_level=None, keep_sources_in_context=None, system_prompt=None, chat_conversation=None): """ consumes all history up to (but not including) latest history item that is presumed to be an [instruction, None] pair :param history: :param langchain_mode: :param add_chat_history_to_context: :param prompt_type: :param prompt_dict: :param chat: :param model_max_length: :param memory_restriction_level: :param keep_sources_in_context: :param system_prompt: :param chat_conversation: :return: """ history = merge_chat_conversation_history(chat_conversation, history) if len(history) >= 1 and len(history[-1]) >= 2 and not history[-1][1]: len_history = len(history) - 1 else: # full history len_history = len(history) # ensure output will be unique to models _, _, _, max_prompt_length = get_cutoffs(memory_restriction_level, for_context=True, model_max_length=model_max_length) context1 = '' if max_prompt_length is not None and add_chat_history_to_context: context1 = '' # - 1 below because current instruction already in history from user() for histi in range(0, len_history): data_point = dict(instruction=history[histi][0], input='', output=history[histi][1]) prompt, pre_response, terminate_response, chat_sep, chat_turn_sep = \ generate_prompt(data_point, prompt_type, prompt_dict, chat, reduced=True, making_context=True, system_prompt=system_prompt, histi=histi) # md -> back to text, maybe not super important if model trained enough if not keep_sources_in_context and langchain_mode != 'Disabled' and prompt.find(super_source_prefix) >= 0: # FIXME: This is relatively slow even for small amount of text, like 0.3s each history item import re prompt = re.sub(f'{re.escape(super_source_prefix)}.*?{re.escape(super_source_postfix)}', '', prompt, flags=re.DOTALL) if prompt.endswith('\n

'): prompt = prompt[:-4] prompt = prompt.replace('
', chat_turn_sep) if not prompt.endswith(chat_turn_sep): prompt += chat_turn_sep # most recent first, add older if can # only include desired chat history if len(prompt + context1) > max_prompt_length: break context1 += prompt _, pre_response, terminate_response, chat_sep, chat_turn_sep = \ generate_prompt({}, prompt_type, prompt_dict, chat, reduced=True, making_context=True, system_prompt=system_prompt, histi=-1) if context1 and not context1.endswith(chat_turn_sep): context1 += chat_turn_sep # ensure if terminates abruptly, then human continues on next line return context1 def get_limited_prompt(instruction, iinput, tokenizer, prompter=None, inference_server=None, prompt_type=None, prompt_dict=None, chat=False, max_new_tokens=None, system_prompt='', context='', chat_conversation=None, text_context_list=None, keep_sources_in_context=False, model_max_length=None, memory_restriction_level=0, langchain_mode=None, add_chat_history_to_context=True, verbose=False, doc_importance=0.5, min_max_new_tokens=256, ): if prompter: prompt_type = prompter.prompt_type prompt_dict = prompter.prompt_dict chat = prompter.chat stream_output = prompter.stream_output system_prompt = prompter.system_prompt # merge handles if chat_conversation is None history = [] history = merge_chat_conversation_history(chat_conversation, history) history_to_context_func = functools.partial(history_to_context, langchain_mode=langchain_mode, add_chat_history_to_context=add_chat_history_to_context, prompt_type=prompt_type, prompt_dict=prompt_dict, chat=chat, model_max_length=model_max_length, memory_restriction_level=memory_restriction_level, keep_sources_in_context=keep_sources_in_context, system_prompt=system_prompt) context2 = history_to_context_func(history) context1 = context if context1 is None: context1 = '' from h2oai_pipeline import H2OTextGenerationPipeline data_point_just_instruction = dict(context='', instruction=instruction, input='') prompt_just_instruction = prompter.generate_prompt(data_point_just_instruction) instruction, num_instruction_tokens = H2OTextGenerationPipeline.limit_prompt(instruction, tokenizer) num_instruction_tokens_real = get_token_count(prompt_just_instruction, tokenizer) num_instruction_tokens += (num_instruction_tokens_real - num_instruction_tokens) context1, num_context1_tokens = H2OTextGenerationPipeline.limit_prompt(context1, tokenizer) context2, num_context2_tokens = H2OTextGenerationPipeline.limit_prompt(context2, tokenizer) iinput, num_iinput_tokens = H2OTextGenerationPipeline.limit_prompt(iinput, tokenizer) if text_context_list is None: text_context_list = [] num_doc_tokens = sum([get_token_count(x + '\n\n', tokenizer) for x in text_context_list]) num_prompt_tokens0 = (num_instruction_tokens or 0) + \ (num_context1_tokens or 0) + \ (num_context2_tokens or 0) + \ (num_iinput_tokens or 0) + \ (num_doc_tokens or 0) # go down to no less than 256, about 1 paragraph # use max_new_tokens before use num_prompt_tokens0 else would be negative or ~0 min_max_new_tokens = min(min_max_new_tokens, max_new_tokens) # by default assume can handle all chat and docs chat_index = 0 # allowed residual is either half of what is allowed if doc exceeds half, or is rest of what doc didn't consume num_non_doc_tokens = num_prompt_tokens0 - num_doc_tokens # to doc first then non-doc, shouldn't matter much either way doc_max_length = max(model_max_length - num_non_doc_tokens, doc_importance * model_max_length) top_k_docs, one_doc_size, num_doc_tokens = get_docs_tokens(tokenizer, text_context_list=text_context_list, max_input_tokens=doc_max_length) non_doc_max_length = max(model_max_length - num_doc_tokens, (1.0 - doc_importance) * model_max_length) if num_non_doc_tokens > non_doc_max_length: # need to limit in some way, keep portion of history but all of context and instruction # 1) drop iinput (unusual to include anyways) # 2) reduce history # 3) reduce context1 # 4) limit instruction so will fit diff1 = non_doc_max_length - ( num_instruction_tokens + num_context1_tokens + num_context2_tokens + min_max_new_tokens) diff2 = non_doc_max_length - (num_instruction_tokens + num_context1_tokens + min_max_new_tokens) diff3 = non_doc_max_length - (num_instruction_tokens + min_max_new_tokens) diff4 = non_doc_max_length - min_max_new_tokens if diff1 > 0: # then should be able to do #1 iinput = '' num_iinput_tokens = 0 elif diff2 > 0 > diff1: # then may be able to do #1 + #2 iinput = '' num_iinput_tokens = 0 chat_index_final = len(history) for chat_index in range(len(history)): # NOTE: history and chat_conversation are older for first entries # FIXME: This is a slow for many short conversations context2 = history_to_context_func(history[chat_index:]) num_context2_tokens = get_token_count(context2, tokenizer) diff1 = non_doc_max_length - ( num_instruction_tokens + num_context1_tokens + num_context2_tokens + min_max_new_tokens) if diff1 > 0: chat_index_final = chat_index if verbose: print("chat_conversation used %d out of %d" % (chat_index, len(history)), flush=True) break chat_index = chat_index_final # i.e. if chat_index == len(history), then nothing can be consumed elif diff3 > 0 > diff2: # then may be able to do #1 + #2 + #3 iinput = '' num_iinput_tokens = 0 context2 = '' num_context2_tokens = 0 context1, num_context1_tokens = H2OTextGenerationPipeline.limit_prompt(context1, tokenizer, max_prompt_length=diff3) if num_context1_tokens <= diff3: pass else: print("failed to reduce", flush=True) else: # then must be able to do #1 + #2 + #3 + #4 iinput = '' num_iinput_tokens = 0 context2 = '' num_context2_tokens = 0 context1 = '' num_context1_tokens = 0 # diff4 accounts for real prompting for instruction # FIXME: history_to_context could include instruction, in case system prompt long, we overcount and could have more free tokens instruction, num_instruction_tokens = H2OTextGenerationPipeline.limit_prompt(instruction, tokenizer, max_prompt_length=diff4) # get actual tokens data_point_just_instruction = dict(context='', instruction=instruction, input='') prompt_just_instruction = prompter.generate_prompt(data_point_just_instruction) num_instruction_tokens_real = get_token_count(prompt_just_instruction, tokenizer) num_instruction_tokens += (num_instruction_tokens_real - num_instruction_tokens) # update full context context = context1 + context2 # update token counts (docs + non-docs, all tokens) num_prompt_tokens = (num_instruction_tokens or 0) + \ (num_context1_tokens or 0) + \ (num_context2_tokens or 0) + \ (num_iinput_tokens or 0) + \ (num_doc_tokens or 0) # update max_new_tokens if inference_server and inference_server.startswith('http'): # assume TGI/Gradio setup to consume tokens and have long output too, even if exceeds model capacity. pass else: # limit so max_new_tokens = prompt + new < max # otherwise model can fail etc. e.g. for distilgpt2 asking for 1024 tokens is enough to fail if prompt=1 token max_new_tokens = min(max_new_tokens, model_max_length - num_prompt_tokens) if prompter is None: # get prompter debug = False stream_output = False # doesn't matter prompter = Prompter(prompt_type, prompt_dict, debug=debug, chat=chat, stream_output=stream_output, system_prompt=system_prompt) data_point = dict(context=context, instruction=instruction, input=iinput) # handle promptA/promptB addition if really from history. # if not from history, then reduced=False inside correct # if mixed, then no specific correct thing to do, so treat like history and promptA/B will come first still context_from_history = len(history) > 0 and len(context1) > 0 prompt = prompter.generate_prompt(data_point, context_from_history=context_from_history) num_prompt_tokens_actual = get_token_count(prompt, tokenizer) return prompt, \ instruction, iinput, context, \ num_prompt_tokens, max_new_tokens, num_prompt_tokens0, num_prompt_tokens_actual, \ chat_index, top_k_docs, one_doc_size def get_docs_tokens(tokenizer, text_context_list=[], max_input_tokens=None): if text_context_list is None or len(text_context_list) == 0: return 0, None, 0 if max_input_tokens is None: max_input_tokens = tokenizer.model_max_length tokens = [get_token_count(x + '\n\n', tokenizer) for x in text_context_list] tokens_cumsum = np.cumsum(tokens) where_res = np.where(tokens_cumsum < max_input_tokens)[0] # if below condition fails, then keep top_k_docs=-1 and trigger special handling next if where_res.shape[0] > 0: top_k_docs = 1 + where_res[-1] one_doc_size = None num_doc_tokens = tokens_cumsum[top_k_docs - 1] # by index else: # if here, means 0 and just do best with 1 doc top_k_docs = 1 text_context_list = text_context_list[:top_k_docs] # critical protection from src.h2oai_pipeline import H2OTextGenerationPipeline doc_content = text_context_list[0] doc_content, new_tokens0 = H2OTextGenerationPipeline.limit_prompt(doc_content, tokenizer, max_prompt_length=max_input_tokens) text_context_list[0] = doc_content one_doc_size = len(doc_content) num_doc_tokens = get_token_count(doc_content + '\n\n', tokenizer) print("Unexpected large chunks and can't add to context, will add 1 anyways. Tokens %s -> %s" % ( tokens[0], new_tokens0), flush=True) return top_k_docs, one_doc_size, num_doc_tokens def entrypoint_main(): """ Examples: WORLD_SIZE=4 CUDA_VISIBLE_DEVICES="0,1,2,3" torchrun --nproc_per_node=4 --master_port=1234 generate.py --base_model='EleutherAI/gpt-j-6B' --lora_weights=lora-alpaca_6B python generate.py --base_model='EleutherAI/gpt-j-6B' --lora_weights='lora-alpaca_6B' python generate.py --base_model='EleutherAI/gpt-neox-20b' --lora_weights='lora-alpaca_20B' # generate without lora weights, no prompt python generate.py --base_model='EleutherAI/gpt-neox-20b' --prompt_type='plain' python generate.py --base_model='togethercomputer/GPT-NeoXT-Chat-Base-20B' --prompt_type='dai_faq' python generate.py --base_model='togethercomputer/GPT-NeoXT-Chat-Base-20B' --prompt_type='dai_faq' --lora_weights='lora_20B_daifaq' # OpenChatKit settings: python generate.py --base_model='togethercomputer/GPT-NeoXT-Chat-Base-20B' --prompt_type='human_bot --debug=True --num_beams=1 --temperature=0.6 --top_k=40 --top_p=1.0 python generate.py --base_model='distilgpt2' --prompt_type='plain' --debug=True --num_beams=1 --temperature=0.6 --top_k=40 --top_p=1.0 --share=False python generate.py --base_model='t5-large' --prompt_type='simple_instruct' python generate.py --base_model='philschmid/bart-large-cnn-samsum' python generate.py --base_model='philschmid/flan-t5-base-samsum' python generate.py --base_model='facebook/mbart-large-50-many-to-many-mmt' python generate.py --base_model='togethercomputer/GPT-NeoXT-Chat-Base-20B' --prompt_type='human_bot' --lora_weights='GPT-NeoXT-Chat-Base-20B.merged.json.8_epochs.57b2892c53df5b8cefac45f84d019cace803ef26.28' must have 4*48GB GPU and run without 8bit in order for sharding to work with use_gpu_id=False can also pass --prompt_type='human_bot' and model can somewhat handle instructions without being instruct tuned python generate.py --base_model=decapoda-research/llama-65b-hf --load_8bit=False --use_gpu_id=False --prompt_type='human_bot' python generate.py --base_model=h2oai/h2ogpt-oig-oasst1-512-6_9b """ H2O_Fire(main) if __name__ == "__main__": entrypoint_main()