''' contain method for api call to jqdatasdk ''' from dotenv import load_dotenv from datetime import datetime, timedelta import jqdatasdk as jq import pandas as pd from typing import List, Optional from sqlalchemy import create_engine import table_schema as ts import os import utils db_url = 'sqlite:///instance/local.db' load_dotenv() user_name = os.environ.get('JQDATA_USER') password = os.environ.get('JQDATA_PASSWORD') def auth_api(func): """ decorator for function require jqdatasdk api """ def wrapper(*args, **kwargs): if (not jq.is_auth()): jq.auth(user_name, password) result = func(*args, **kwargs) return result return wrapper def aggregate_sector(input: str) -> Optional[str]: ''' mapping from sector to aggregated sector retur None if not found this handling is for spotting undefined sector in current mapping later Return: str -- aggregated sector None if no mapping ''' mapping = { '电气设备I': '工业', '建筑装饰I': '工业', '交通运输I': '工业', '机械设备I': '工业', '国防军工I': '工业', '综合I': '工业', '电子I': '信息与通信', '计算机I': '信息与通信', '通信I': '信息与通信', '传媒I': '信息与通信', '纺织服装I': '消费', '家用电器I': '消费', '汽车I': '消费', '休闲服务I': '消费', '商业贸易I': '消费', '食品饮料I': '消费', '美容护理I': '消费', '农林牧渔I': '消费', '钢铁I': '原料与能源', '建筑材料I': '原料与能源', '有色金属I': '原料与能源', '化工I': '原料与能源', '轻工制造I': '原料与能源', '煤炭I': '原料与能源', '石油石化I': '原料与能源', '采掘I': '原料与能源', '医药生物I': '医药卫生', '公用事业I': '公用事业', '环保I': '公用事业', '房地产I': '金融与地产', '银行I': '金融与地产', '非银金融I': '金融与地产' } # return the first mapping found sectors = input.split(" ") maped_name = "其他" for sector in sectors: maped_name = mapping.get(sector, None) if maped_name is not None: return maped_name return maped_name @auth_api def get_all_stock_info() -> tuple[pd.DataFrame, List[str]]: ''' return all stock information Return ------ tuple: tuple(pd.DataFrame, List[str]) DataFrame -- display_name | name | start_date | end_date | type ''' error = [] try: df = jq.get_all_securities() df['ticker'] = df.index df.reset_index(drop=True, inplace=True) # df.reset_index(inplace=True) return df, error except Exception as e: error.append(f'get_all_stock_info\n{e}') return None, error @auth_api def add_detail_to_stocks(df: pd.DataFrame) -> List[str]: """ add display_name, name, sector, and aggregate sector to each stock if not exist already return a list of error message Args: pd.DataFrame ticker | date | weight | sector | aggregate_sector | display_name | name Returns: List[str], error messages """ error = [] df[['sector', 'aggregate_sector']] = df.groupby( 'ticker')[['sector', 'aggregate_sector']].ffill() df[['display_name', 'name']] = df.groupby( 'ticker')[['display_name', 'name']].ffill() not_have_sector = list( df[df['aggregate_sector'].isnull()]['ticker'].unique()) not_have_name = list(df[df['name'].isnull()]['ticker'].unique()) # sector and aggregate sector if len(not_have_sector) != 0: try: sectors = jq.get_industry(security=not_have_sector) df['sector'] = df.apply(lambda x: x.sector if not pd.isna(x.sector) else " ".join(value['industry_name'] for value in sectors[x.ticker].values()), axis=1) df['aggregate_sector'] = df.apply( lambda x: x.aggregate_sector if not pd.isna(x.aggregate_sector) else aggregate_sector(x.sector), axis=1 ) except Exception as e: error.append(f'Error on creaet_sector_information\n{ticker}\n{e}') # display_name and name if len(not_have_name) != 0: try: for ticker in not_have_name: detail = jq.get_security_info(ticker) df.loc[df.ticker.isin(not_have_name) ]['display_name'] = detail.display_name df.loc[df.ticker.isin(not_have_name)]['name'] = detail.name except Exception as e: error.append(f'Error on get display_name and name\n{ticker}\n{e}') return error @auth_api def update_portfolio_profile(stocks: List[dict], current_p: pd.DataFrame = None) -> tuple[pd.DataFrame, List[str]]: """create or update a portfolio profile, return a time series of profile Parameters ---------- stocks : List[{ticker: Str, shares: float, date:datetime}] update profile with a list of stock information current_p : pd.DataFrame, optional current portfolio profile, default is None Returns ------- updated_profile : pd.DataFrame ticker | date | weight | sector | aggregate_sector | display_name | name error : List[str] a list of error message """ error = [] profile_df = pd.DataFrame(stocks) profile_df['sector'] = None profile_df['aggregate_sector'] = None # add display_name try: with create_engine(db_url).connect() as conn: info_df = pd.read_sql_table(ts.STOCKS_DETAILS_TABLE, conn) profile_df = pd.merge( profile_df, info_df[['display_name', 'ticker', 'name', 'aggregate_sector', ]], on='ticker', how='left') except Exception as e: error.append(f'create_portfolio \n{e}') # get sector information incoming_error = add_detail_to_stocks(profile_df) error.extend(incoming_error) # concate to existing profile if exist if current_p is not None: profile_df = pd.concat([profile_df, current_p], ignore_index=True) profile_df.drop_duplicates( subset=['ticker', 'date'], keep='last', inplace=True) profile_df.reset_index(drop=True, inplace=True) return profile_df, error @auth_api def get_all_stocks_detail(): '''get df contain all stock display_name, name, sector, aggregate_sector''' detail_df = jq.get_all_securities() detail_df['ticker'] = detail_df.index detail_df.reset_index(drop=True, inplace=True) industry_info = jq.get_industry(detail_df.ticker.to_list()) detail_df['sector'] = detail_df.apply(lambda x: " ".join( value['industry_name']for value in industry_info[x.ticker].values()), axis=1) detail_df['aggregate_sector'] = detail_df.apply( lambda x: aggregate_sector(x.sector), axis=1) return detail_df @auth_api def get_api_usage(): return jq.get_query_count() @auth_api def get_stocks_price(profile: pd.DataFrame, start_date: datetime, end_date: datetime, frequency='daily') -> tuple[pd.DataFrame, List[str]]: """ Return a dataframe contain stock price between period of time for price in a portfolio profile Arguments: profile {pd.DataFrame} -- ticker | date | weight | sector | aggregate_sector | display_name | name start_date {datetime} -- start date of the period include start date end_date {datetime} -- end date of the period include end date frequency {str} -- resolution of the price, default is daily Returns: Tuple(pd.DataFrame, List[str]) pd.DataFrame -- ticker date open close high low volumn money error_message {list} -- a list of error message """ error_message = [] start_str = start_date.strftime('%Y-%m-%d') end_str = end_date.strftime('%Y-%m-%d') if profile.date.min() < start_date: # hanlde benchmark doesn't have weight on the exact date start_str = profile.date.min().strftime('%Y-%m-%d') ticker = profile['ticker'].to_list() try: data = jq.get_price(ticker, start_date=start_str, end_date=end_str, frequency=frequency) data.rename(columns={'time': 'date', 'code': "ticker"}, inplace=True) return data, error_message except Exception as e: error_message.append(f'Error when fetching {ticker} \n {e}') return None, error_message @auth_api def fetch_stocks_price(**params): '''request list of stock price from start_date to end_date with frequency or count''' stocks_df = jq.get_price(**params) stocks_df.rename(columns={'code': 'ticker'}, inplace=True) return stocks_df @auth_api def fetch_benchmark_profile(start_date: datetime, end_date: datetime, delta_time=timedelta(days=30), benchmark="000905.XSHG"): ''' fetch benchmark profile from start_date to end_date with delta_time Parameters ---------- start_date : datetime start date of the period include start date end_date : datetime end date of the period include end date delta_time : timedelta, optional the default is 30 days since the jq api only update index weight once every month ''' if end_date < start_date: raise Exception('end_date must be greater than start_date') results = [] # handle end_date == start_date while start_date < end_date: try: date_str = start_date.strftime('%Y-%m-%d') result = jq.get_index_weights(benchmark, date=date_str) results.append(result) except Exception as e: print(f'Error when fetching {benchmark}\n\ update on {date_str} is missing\n\ {e}') start_date += delta_time update_df = pd.concat(results) update_df['ticker'] = update_df.index update_df['date'] = pd.to_datetime(update_df['date']) update_df.rename({'date': 'time'}, inplace=True, axis=1) # remove duplicate row update_df = update_df.drop_duplicates( subset=['ticker', 'time'], keep='last') update_df.reset_index(drop=True, inplace=True) return update_df