import gradio as gr # gr.Interface.load("prasanna2003/blip-image-captioning").launch() from PIL import Image import requests import gradio as gr from transformers import BlipProcessor, BlipForConditionalGeneration model_id = "prasanna2003/blip-image-captioning" model = BlipForConditionalGeneration.from_pretrained(model_id) processor = BlipProcessor.from_pretrained(model_id) def launch(input): image = Image.open(requests.get(input, stream=True).raw).convert('RGB') inputs = processor(image, return_tensors="pt") out = model.generate(**inputs) return processor.decode(out[0], skip_special_tokens=True) iface = gr.Interface(launch, inputs="text", outputs="text") iface.launch(share=True)