from langchain.chat_models import ChatOpenAI from langchain.schema import HumanMessage, SystemMessage from langchain_community.tools import DuckDuckGoSearchRun from ai71 import AI71 import gradio as gr import openai import os import re import matplotlib.pyplot as plt from PIL import Image import numpy as np import pytesseract # Make sure to import the necessary OpenAI API client and configure it. # all_cals = {} def extract_calories_and_items(text): # Use regular expression to find all numerical values associated with "calory" or "calories" pattern = r'(\d+)\s*(?:calory|calories)' matches = re.findall(pattern, text, re.IGNORECASE) # Convert the matches to integers calories = [int(match) for match in matches] return calories def plot_calories(calories): labels = sorted(calories, key=calories.get) vals = [calories[label] for label in labels] plt.barh(labels, vals, color='skyblue') plt.xlabel('Calories') plt.title('Item and Count') plt.tight_layout() def parse_items(items_string): # Remove square brackets and split by comma items_list = items_string.strip('[]').split(',') item_dict = {} # Define the pattern to match the quantity and item pattern = r'(\d+)\s*x\s*(\w+)' for item in items_list: match = re.match(pattern, item.strip()) if match: quantity = int(match.group(1)) item_name = match.group(2) if item_name in item_dict: item_dict[item_name] += quantity else: item_dict[item_name] = quantity return item_dict # Set the API key for AI71 #AI71_API_KEY = "key" AI71_API_KEY = os.getenv('KEY') AI71_BASE_URL = "https://api.ai71.ai/v1/" client = AI71(AI71_API_KEY) search = DuckDuckGoSearchRun() # usr_input = input(f"User:") # # print(items) def chatGPT_food(userinput, temperature=0.1, max_tokens=300): keyword = client.chat.completions.create( model="tiiuae/falcon-180B-chat", messages=[ {"role": "system", "content": '''you need to extract the food item from the user text without any comments example: user: I ate two apples assistant: 2 x apple'''}, {"role": "user", "content": userinput} ], # temperature=0.5, ) items = parse_items(keyword.choices[0].message.content) for item, count in items.items(): result = search.invoke(f'calories of {item}') response = client.chat.completions.create( model="tiiuae/falcon-180B-chat", messages=[ {"role": "system", "content": '''based on the provided information extract the calories count per portion of the item provided, just the calories and portion in grams or ml without further comments Example: orange 47 calories per 100 gram cola 38 calories per 100 gram do not generate more or add any unneeded comments, just follow the examples strictly'''}, {"role": "user", "content": result} ], temperature=0.2, ) # print("search") # print(result) # print("ai") # print (response.choices[0].message.content) calories = extract_calories_and_items(response.choices[0].message.content) # print("calories") # print(calories) try: all_cals[f"{count}x{item}"] = count*calories[0] except: continue return all_cals def chatGPT_invoice(userinput, temperature=0.1, max_tokens=300): response = client.chat.completions.create( model="tiiuae/falcon-180B-chat", messages=[ {"role": "system", "content": '''from the following invoice, find the name of the restaurant, then write a table for each food in the invoice and estimate its calories count only knowing that this food is from the same restaurant, with no further text or comments, or notes: example: "Restaurant: KFC " Do it for this text:'''}, {"role": "user", "content": userinput} ], temperature=temperature, max_tokens=max_tokens ) return response.choices[0].message.content def update_plot(userinput): # all_cals = chatGPT_food(userinput) fig, ax = plt.subplots() plot_calories(all_cals) return fig def ocr(input_img): img1 = np.array(input_img) text = pytesseract.image_to_string(img1) output = chatGPT_invoice(text) return output with gr.Blocks() as demo: all_cals = {} with gr.Tab("Food Calories"): food = gr.Textbox(label="Food") output = gr.Textbox(label="Calories") greet_btn = gr.Button("Get Calories") greet_btn.click(fn=chatGPT_food, inputs=food, outputs=output) with gr.Tab("Invoice OCR"): image_input = gr.Image(height=200, width=200) output_text = gr.Textbox(label="Estimated Calories from Invoice") demo_ocr = gr.Interface(fn=ocr, inputs=image_input, outputs=output_text) with gr.Tab("Calories Plot"): # food_plot = gr.Textbox(label="Enter Food for Plot") plot_output = gr.Plot(label="Calories Plot") plot_btn = gr.Button("Generate Plot") plot_btn.click(fn=update_plot, inputs=plot_btn, outputs=plot_output) demo.launch()