import functools import torch import transformers import peft from transformers.trainer_pt_utils import LabelSmoother from utils.dataset import AudioCollator from utils.logger import MetricLogger from utils.output import ansi, get_ansi_len, output_iter IGNORE_TOKEN_ID = LabelSmoother.ignore_index def train_gpt_lora( chat, dataset, decoder_encoder, dvae_encoder, batch_size=16, epochs=10, train_text=True, speaker_embeds=None, lora_r=8, lora_alpha=16, ): if speaker_embeds is None: speaker_embeds = {} tokenizer = chat.pretrain_models["tokenizer"] decoder_decoder = chat.pretrain_models["decoder"] decoder_decoder.eval().requires_grad_(False) decoder_encoder.to(device=dataset.device).eval().requires_grad_(False) dvae_decoder = chat.pretrain_models["dvae"] dvae_decoder.eval().requires_grad_(False) dvae_encoder.to(device=dataset.device).eval().requires_grad_(False) gpt = chat.pretrain_models["gpt"] gpt.train().requires_grad_() # Add LoRA to GPT model lora_config = peft.LoraConfig(r=lora_r, lora_alpha=lora_alpha) gpt.gpt = peft.get_peft_model(gpt.gpt, lora_config) speaker_embeds = { speaker: torch.randn(768, device=dataset.device, requires_grad=True) for speaker in dataset.speakers } | speaker_embeds for speaker_embed in speaker_embeds.values(): std, mean = chat.pretrain_models["spk_stat"].chunk(2) speaker_embed.data = speaker_embed.data * std + mean SPEAKER_TOKEN_ID = tokenizer.convert_tokens_to_ids("[spk_emb]") AUDIO_EOS_TOKEN_ID = 0 AUDIO_PAD_TOKEN_ID = AUDIO_EOS_TOKEN_ID train_params = list(gpt.parameters()) + list(speaker_embeds.values()) optimizer = torch.optim.Adam( gpt.parameters(), lr=1e-3, weight_decay=0, betas=[0.9, 0.95], eps=1e-5 ) optimizer.add_param_group({"params": speaker_embeds.values(), "lr": 1e-1}) loss_fn = torch.nn.CrossEntropyLoss() lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, epochs, 1e-7) loader = torch.utils.data.DataLoader( dataset, batch_size=batch_size, shuffle=True, collate_fn=AudioCollator(text_pad=tokenizer.pad_token_id), ) logger = MetricLogger() logger.create_meters(loss=None, mse_loss=None, audio_loss=None, text_loss=None) for _epoch in range(epochs): _epoch += 1 logger.reset() header = "{blue_light}{0}: {1}{reset}".format( "Epoch", output_iter(_epoch, epochs), **ansi ) header = header.ljust(max(len("Epoch"), 30) + get_ansi_len(header)) iterator = logger.log_every(loader, header=header, tqdm_header="Batch") for batch in iterator: speakers = batch["speaker"] text_input_ids = batch["text_input_ids"] text_attention_mask = batch["text_attention_mask"] audio_mel_specs = batch["audio_mel_specs"] audio_attention_mask = batch["audio_attention_mask"] batch_size, text_len = text_attention_mask.size() dvae_audio_latents = dvae_encoder(audio_mel_specs, audio_attention_mask) _, dvae_audio_input_ids = quantize( dvae_decoder.vq_layer.quantizer, dvae_audio_latents ) dvae_audio_input_ids[~audio_attention_mask.bool()] = AUDIO_PAD_TOKEN_ID extended_audio_attention_mask = torch.cat( [ audio_attention_mask, torch.zeros( (batch_size, 1), dtype=audio_attention_mask.dtype, device=audio_attention_mask.device, ), ], dim=1, ) extended_audio_input_ids = torch.cat( [ dvae_audio_input_ids, AUDIO_PAD_TOKEN_ID * torch.ones( (batch_size, 1, gpt.num_vq), dtype=dvae_audio_input_ids.dtype, device=dvae_audio_input_ids.device, ), ], dim=1, ) indices = audio_attention_mask.int().sum(dim=1) for i in range(batch_size): extended_audio_attention_mask[i, indices[i]] = 1 extended_audio_input_ids[i, indices[i]] = AUDIO_EOS_TOKEN_ID input_ids = torch.cat( [ text_input_ids.unsqueeze(-1).repeat(1, 1, gpt.num_vq), extended_audio_input_ids, ], dim=1, ) attention_mask = torch.cat( [text_attention_mask, extended_audio_attention_mask], dim=1 ) text_mask = torch.cat( [ torch.ones_like(text_attention_mask, dtype=bool), torch.zeros_like(extended_audio_attention_mask, dtype=bool), ], dim=1, ) labels = input_ids.clone() labels[~attention_mask.bool()] = IGNORE_TOKEN_ID inputs_embeds = gpt.get_emb(input_ids=input_ids, text_mask=text_mask) indices = torch.all(input_ids == SPEAKER_TOKEN_ID, dim=-1) for i, speaker in enumerate(speakers): inputs_embeds[i, indices[i]] = torch.nn.functional.normalize( speaker_embeds[speaker].to(dtype=inputs_embeds.dtype), p=2.0, dim=-1, eps=1e-12, ).unsqueeze(0) outputs = gpt.gpt.forward( inputs_embeds=inputs_embeds, attention_mask=attention_mask ) hidden_states = outputs.last_hidden_state text_hidden_states = hidden_states[:, : text_len - 1] audio_hidden_states = hidden_states[:, text_len - 1 : -1] audio_logits = torch.stack( [gpt.head_code[i](audio_hidden_states) for i in range(gpt.num_vq)], dim=2, ) audio_loss = loss_fn( audio_logits.flatten(0, 2), labels[:, text_len:].flatten(0, 2) ) loss = audio_loss if train_text: text_logits = gpt.head_text(text_hidden_states) text_loss = loss_fn( text_logits.flatten(0, 1), labels[:, 1:text_len, 0].flatten(0, 1) ) loss += text_loss logger.meters["text_loss"].update(text_loss.item(), n=batch_size) gpt_gen_mel_specs = decoder_decoder( audio_hidden_states[:, :-1].transpose(1, 2) ).transpose(1, 2) mse_loss = torch.nn.functional.mse_loss(gpt_gen_mel_specs, audio_mel_specs) loss += 0.01 * mse_loss optimizer.zero_grad() loss.backward() torch.nn.utils.clip_grad_norm_(train_params, 1.0) optimizer.step() logger.meters["loss"].update(loss.item(), n=batch_size) logger.meters["mse_loss"].update(mse_loss.item(), n=batch_size) logger.meters["audio_loss"].update(audio_loss.item(), n=batch_size) lr_scheduler.step() optimizer.zero_grad() return speaker_embeds # Example usage def main(): # Load necessary models and data paths chat = ChatTTS.Chat() chat.load_models() dataset = XzListTar( root="data/all.list", tokenizer=chat.pretrain_models["tokenizer"], vocos_model=chat.pretrain_models["vocos"], tar_path="data/Xz.tar", tar_in_memory=True, process_ahead=True, ) decoder_encoder = DVAEEncoder( **get_encoder_config(chat.pretrain_models["decoder"].decoder) ) dvae_encoder = DVAEEncoder( **get_encoder_config(chat.pretrain_models["dvae"].decoder) ) # Train GPT with LoRA speaker_embeds = train_gpt_lora( chat=chat, dataset=dataset, decoder_encoder=decoder_encoder, dvae_encoder=dvae_encoder, batch_size=32, epochs=10, train_text=True, lora_r=8, lora_alpha=16, ) # Save LoRA parameters and embeddings lora_save_path = "./saved_models/gpt_lora.pth" peft.save_pretrained(gpt.gpt, lora_save_path) np.savez( "./saved_models/speaker_embeds.npz", **{k: v.cpu().numpy() for k, v in speaker_embeds.items()} ) if __name__ == "__main__": main()