# -*- coding: utf-8 -*- # Copyright 2019 Tomoki Hayashi # MIT License (https://opensource.org/licenses/MIT) import torch import torch.nn.functional as F from torch import nn from ..hparams import HParams def _make_stft_cfg(hop_length, win_length=None): if win_length is None: win_length = 4 * hop_length n_fft = 2 ** (win_length - 1).bit_length() return dict(n_fft=n_fft, hop_length=hop_length, win_length=win_length) def get_stft_cfgs(hp: HParams): assert hp.wav_rate == 44100, f"wav_rate must be 44100, got {hp.wav_rate}" return [_make_stft_cfg(h) for h in (100, 256, 512)] def stft(x, n_fft, hop_length, win_length, window): dtype = x.dtype x = torch.stft( x.float(), n_fft, hop_length, win_length, window, return_complex=True ) x = x.abs().to(dtype) x = x.transpose(2, 1) # (b f t) -> (b t f) return x class SpectralConvergengeLoss(nn.Module): def forward(self, x_mag, y_mag): """Calculate forward propagation. Args: x_mag (Tensor): Magnitude spectrogram of predicted signal (B, #frames, #freq_bins). y_mag (Tensor): Magnitude spectrogram of groundtruth signal (B, #frames, #freq_bins). Returns: Tensor: Spectral convergence loss value. """ return torch.norm(y_mag - x_mag, p="fro") / torch.norm(y_mag, p="fro") class LogSTFTMagnitudeLoss(nn.Module): def forward(self, x_mag, y_mag): """Calculate forward propagation. Args: x_mag (Tensor): Magnitude spectrogram of predicted signal (B, #frames, #freq_bins). y_mag (Tensor): Magnitude spectrogram of groundtruth signal (B, #frames, #freq_bins). Returns: Tensor: Log STFT magnitude loss value. """ return F.l1_loss(torch.log1p(x_mag), torch.log1p(y_mag)) class STFTLoss(nn.Module): def __init__(self, hp, stft_cfg: dict, window="hann_window"): super().__init__() self.hp = hp self.stft_cfg = stft_cfg self.spectral_convergenge_loss = SpectralConvergengeLoss() self.log_stft_magnitude_loss = LogSTFTMagnitudeLoss() self.register_buffer( "window", getattr(torch, window)(stft_cfg["win_length"]), persistent=False ) def forward(self, x, y): """Calculate forward propagation. Args: x (Tensor): Predicted signal (B, T). y (Tensor): Groundtruth signal (B, T). Returns: Tensor: Spectral convergence loss value. Tensor: Log STFT magnitude loss value. """ stft_cfg = dict(self.stft_cfg) x_mag = stft(x, **stft_cfg, window=self.window) # (b t) -> (b t f) y_mag = stft(y, **stft_cfg, window=self.window) sc_loss = self.spectral_convergenge_loss(x_mag, y_mag) mag_loss = self.log_stft_magnitude_loss(x_mag, y_mag) return dict(sc=sc_loss, mag=mag_loss) class MRSTFTLoss(nn.Module): def __init__(self, hp: HParams, window="hann_window"): """Initialize Multi resolution STFT loss module. Args: resolutions (list): List of (FFT size, hop size, window length). window (str): Window function type. """ super().__init__() stft_cfgs = get_stft_cfgs(hp) self.stft_losses = nn.ModuleList() self.hp = hp for c in stft_cfgs: self.stft_losses += [STFTLoss(hp, c, window=window)] def forward(self, x, y): """Calculate forward propagation. Args: x (Tensor): Predicted signal (b t). y (Tensor): Groundtruth signal (b t). Returns: Tensor: Multi resolution spectral convergence loss value. Tensor: Multi resolution log STFT magnitude loss value. """ assert ( x.dim() == 2 and y.dim() == 2 ), f"(b t) is expected, but got {x.shape} and {y.shape}." dtype = x.dtype x = x.float() y = y.float() # Align length x = x[..., : y.shape[-1]] y = y[..., : x.shape[-1]] losses = {} for f in self.stft_losses: d = f(x, y) for k, v in d.items(): losses.setdefault(k, []).append(v) for k, v in losses.items(): losses[k] = torch.stack(v, dim=0).mean().to(dtype) return losses