# AUTOGENERATED! DO NOT EDIT! File to edit: app.ipynb. # %% auto 0 __all__ = ['learn', 'categories', 'image', 'label', 'examples', 'intf', 'is_cat', 'classify_img'] # %% app.ipynb 1 from fastai.vision.all import * import gradio as gr # def is_cat(x): return x[0].isupper() # %% app.ipynb 3 learn_swin = load_learner("model_swin.pkl") learn_conv = load_learner("model_conv.pkl") # %% app.ipynb 5 categories = [ 'Bathroom', 'Bedroom', 'Floor plan', 'Front', 'Home Office', 'Kitchen', 'Laundry', 'Living room', 'Parking', 'Porch', 'Swimming pool', 'Views', 'Walk In Closet', 'Yard' ] def classify_img(img, use_conv): pred,idx,probs = learn_conv.predict(img) if use_conv else learn_swin.predict(img) return dict(zip(categories, map(float, probs))) # %% app.ipynb 7 examples = [ ["kitchen.jpg", False], ["living_room.jpg", False], ["living_room2.jpg", False], ["kitchen.jpg", True], ["living_room.jpg", True], ["living_room2.jpg", True] ] intf = gr.Interface( fn=classify_img, inputs=[ gr.components.Image(type="pil", shape=(640, 480)), gr.components.Checkbox(label="Use conv model", value=False), ], outputs=[ gr.components.Label() ], examples=examples ) intf.launch(inline=False)