import gradio as gr # import numpy as np import torch import requests # from PIL import Image from torchvision import transforms model = torch.hub.load('pytorch/vision:v0.6.0', 'resnet18', pretrained=True).eval() # Download human-readable labels for ImageNet. response = requests.get("https://git.io/JJkYN") labels = response.text.split("\n") # def sepia(input_img): # sepia_filter = np.array([ # [0.393, 0.769, 0.189], # [0.349, 0.686, 0.168], # [0.272, 0.534, 0.131] # ]) # sepia_img = input_img.dot(sepia_filter.T) # sepia_img /= sepia_img.max() # return sepia_img # def greet(name): # return "Hello " + name + "!!" def predict(inp): inp = transforms.ToTensor()(inp).unsqueeze(0) with torch.no_grad(): prediction = torch.nn.functional.softmax(model(inp)[0], dim=0) confidences = {labels[i]: float(prediction[i]) for i in range(1000)} return confidences # demo = gr.Interface(fn=sepia, inputs="image", outputs="image") demo = gr.Interface(fn=predict, inputs=gr.inputs.Image(type="pil"), outputs=gr.outputs.Label(num_top_classes=3), examples=["lion.jpg", "cheetah.jpg"]) demo.launch() # iface = gr.Interface(fn=greet, inputs="text", outputs="text") # iface.launch()