import argparse import concurrent.futures import os from loguru import logger from modelscope.pipelines import pipeline from modelscope.utils.constant import Tasks from tqdm import tqdm os.environ["MODELSCOPE_CACHE"] = "./" def transcribe_worker(file_path: str, inference_pipeline, language): """ Worker function for transcribing a segment of an audio file. """ rec_result = inference_pipeline(audio_in=file_path) text = str(rec_result.get("text", "")).strip() text_without_spaces = text.replace(" ", "") logger.info(file_path) if language != "EN": logger.info("text: " + text_without_spaces) return text_without_spaces else: logger.info("text: " + text) return text def transcribe_folder_parallel(folder_path, language, max_workers=4): """ Transcribe all .wav files in the given folder using ThreadPoolExecutor. """ logger.critical(f"parallel transcribe: {folder_path}|{language}|{max_workers}") if language == "JP": workers = [ pipeline( task=Tasks.auto_speech_recognition, model="damo/speech_UniASR_asr_2pass-ja-16k-common-vocab93-tensorflow1-offline", ) for _ in range(max_workers) ] elif language == "ZH": workers = [ pipeline( task=Tasks.auto_speech_recognition, model="damo/speech_paraformer-large-vad-punc_asr_nat-zh-cn-16k-common-vocab8404-pytorch", model_revision="v1.2.4", ) for _ in range(max_workers) ] else: workers = [ pipeline( task=Tasks.auto_speech_recognition, model="damo/speech_UniASR_asr_2pass-en-16k-common-vocab1080-tensorflow1-offline", ) for _ in range(max_workers) ] file_paths = [] langs = [] for root, _, files in os.walk(folder_path): for file in files: if file.lower().endswith(".wav"): file_path = os.path.join(root, file) lab_file_path = os.path.splitext(file_path)[0] + ".lab" file_paths.append(file_path) langs.append(language) all_workers = ( workers * (len(file_paths) // max_workers) + workers[: len(file_paths) % max_workers] ) with concurrent.futures.ThreadPoolExecutor(max_workers=max_workers) as executor: for i in tqdm(range(0, len(file_paths), max_workers), desc="转写进度: "): l, r = i, min(i + max_workers, len(file_paths)) transcriptions = list( executor.map( transcribe_worker, file_paths[l:r], all_workers[l:r], langs[l:r] ) ) for file_path, transcription in zip(file_paths[l:r], transcriptions): if transcription: lab_file_path = os.path.splitext(file_path)[0] + ".lab" with open(lab_file_path, "w", encoding="utf-8") as lab_file: lab_file.write(transcription) logger.critical("已经将wav文件转写为同名的.lab文件") if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "-f", "--filepath", default="./raw/lzy_zh", help="path of your model" ) parser.add_argument("-l", "--language", default="ZH", help="language") parser.add_argument("-w", "--workers", default="1", help="trans workers") args = parser.parse_args() transcribe_folder_parallel(args.filepath, args.language, int(args.workers)) print("转写结束!")