import argparse import concurrent.futures import glob import json import os import re import huggingface_hub from tqdm import tqdm from utils import ( chat_completion_anthropic, chat_completion_openai, chat_completion_openai_azure, get_endpoint, load_model_answers, load_questions, make_config, ) def get_score(judgment, pattern, pairwise=True): matches = pattern.findall(judgment) matches = [m for m in matches if m != ""] if len(set(matches)) == 0: return None, True elif len(set(matches)) == 1: if pairwise: return matches[0].strip("\n"), False return int(matches[0]) else: return None, False # get answer from model def get_answer(model, conv, temperature, max_tokens, endpoint_dict=None): api_dict = get_endpoint(endpoint_dict["endpoints"]) if endpoint_dict["api_type"] == "anthropic": output = chat_completion_anthropic(model, conv, temperature, max_tokens) elif endpoint_dict["api_type"] == "azure": output = chat_completion_openai_azure(model, conv, temperature, max_tokens, api_dict) else: output = chat_completion_openai(model, conv, temperature, max_tokens, api_dict) return output def judgment(**args): question = args["question"] answer = args["answer"] reference = args["reference"] baseline = args["baseline_answer"] configs = args["configs"] output_file = args["output_file"] model = configs["judge_model"] num_games = 2 if configs["pairwise"] else 1 output = { "question_id":question["question_id"], "model":answer["model_id"], "judge": model, "games":[] } for game in range(num_games): conv = [{"role": "system", "content": configs["system_prompt"]}] for template in configs["prompt_template"]: prompt_args = {} for i, turn in enumerate(question["turns"]): prompt_args[f"question_{i+1}"] = turn["content"] base = 1 if baseline: if game % 2 == 1: # swap position temp = baseline baseline = answer answer = temp for i, turn in enumerate(baseline["choices"][0]["turns"]): prompt_args[f"answer_{i+1}"] = turn["content"] base += 1 if answer: for i, turn in enumerate(answer["choices"][0]["turns"]): prompt_args[f"answer_{i+base}"] = turn["content"] if reference: for j, ref_answer in enumerate(reference): for i, turn in enumerate(ref_answer["choices"][0]["turns"]): prompt_args[f"ref_answer_{i+j+1}"] = turn["content"] user_prompt = template.format(**prompt_args) conv.append({"role": "user", "content": user_prompt}) judgment = "" for _ in range(2): new_judgment = get_answer( model, conv, configs["temperature"], configs["max_tokens"], args["endpoint_dict"], ) judgment += ("\n" + new_judgment) score, try_again = get_score(judgment, args["regex_pattern"]) conv.append({"role": "assistant", "content": new_judgment}) if not try_again: break conv.append({"role": "user", "content": "continue your judgment and finish by outputting a final verdict label"}) result = { "user_prompt": conv[1]["content"], "judgment": judgment, "score":score } output["games"].append(result) with open(output_file, "a") as f: f.write(json.dumps(output, ensure_ascii=False) + "\n") huggingface_hub.HfApi().upload_file(output_file, path_in_repo=f'model_judgment/{configs['judge_model']}/{output_file.split('/')[-1]}', repo_id='Vikhrmodels/openbench-eval', repo_type='dataset') if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--setting-file", type=str, default="./config/judge_config.yaml") parser.add_argument("--endpoint-file", type=str, default="./config/api_config.yaml") args = parser.parse_args() print(args) configs = make_config(args.setting_file) endpoint_list = make_config(args.endpoint_file) print(f'judge model: {configs["judge_model"]}, baseline: {configs["baseline"]}, baseline model: {configs["baseline_model"]}, reference: {configs["reference"]}, ' + f'reference models: {configs["ref_model"]}, temperature: {configs["temperature"]}, max tokens: {configs["max_tokens"]}, pairwise: {configs["pairwise"]}') if configs["regex_pattern"]: pattern = re.compile(configs["regex_pattern"]) question_file = os.path.join("./data", configs["bench_name"], "question.jsonl") external_dir = os.path.join("./data", configs["bench_name"], "model_answer/external") internal_dir = os.path.join("./data", configs["bench_name"], "model_answer/internal") ref_answer_dir = os.path.join("data", configs["bench_name"], "reference_answer") questions = load_questions(question_file) model_answers_external = load_model_answers(external_dir) model_answers_internal = load_model_answers(internal_dir) # internal has priority model_answers = {**model_answers_external, **model_answers_internal} # if user choose a set of models, only judge those models models = [model.split('/')[-1].split('.')[0] for model in glob.glob('./data/arena-hard-v0.1/model_answer/external/*.jsonl')] ref_answers = None if configs["reference"]: ref_answers = load_model_answers(ref_answer_dir) ref_answers = [ref_answers[model] for model in configs["ref_model"]] output_files = {} output_dir = f"data/{configs['bench_name']}/model_judgment/{configs['judge_model']}" for model in models: output_files[model] = os.path.join( output_dir, f"{model}.jsonl", ) for output_file in output_files.values(): os.makedirs(os.path.dirname(output_file), exist_ok=True) existing_judgments = load_model_answers(output_dir) endpoint_info = endpoint_list[configs["judge_model"]] with concurrent.futures.ThreadPoolExecutor(max_workers=endpoint_info["parallel"]) as executor: futures = [] for model in models: count = 0 for question in questions[:2]: question_id = question["question_id"] kwargs = {} kwargs["question"] = question if model in model_answers and question_id not in model_answers[model]: print(f"Warning: {model} answer to {question['question_id']} cannot be found.") continue if model in existing_judgments and question_id in existing_judgments[model]: count += 1 continue kwargs["answer"] = model_answers[model][question_id] if ref_answers: kwargs["reference"] = [ref_answer[question_id] for ref_answer in ref_answers] assert len(kwargs["reference"]) == len(configs["ref_model"]) else: kwargs["reference"] = None if configs["baseline"]: kwargs["baseline_answer"] = model_answers[configs["baseline_model"]][question_id] else: kwargs["baseline_answer"] = None kwargs["configs"] = configs kwargs["endpoint_dict"] = endpoint_info kwargs["output_file"] = output_files[model] kwargs["regex_pattern"] = pattern future = executor.submit(judgment, **kwargs) futures.append(future) if count > 0: print(f"{count} number of existing judgments") for future in tqdm( concurrent.futures.as_completed(futures), total=len(futures) ): future.result()