import os import torch import numpy as np import gradio as gr from segment_anything import build_sam, SamAutomaticMaskGenerator os.system(r'python -m wget https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth') hourglass_args = { "baseline": {}, "1.2x faster": { "use_hourglass": True, "hourglass_clustering_location": 14, "hourglass_num_cluster": 100, }, "1.5x faster": { "use_hourglass": True, "hourglass_clustering_location": 6, "hourglass_num_cluster": 81, }, } def predict(image, speed_mode): mask_generator = SamAutomaticMaskGenerator(build_sam(checkpoint="sam_vit_h_4b8939.pth", hourglass_kwargs=hourglass_args[speed_mode])) masks = mask_generator.generate(image) if len(masks) == 0: return image sorted_masks = sorted(masks, key=(lambda x: x['area']), reverse=True) img = np.ones(image.shape) for mask in sorted_masks: m = mask['segmentation'] color_mask = np.random.random((1, 1, 3)) img = img * (1 - m[..., None]) + color_mask * m[..., None] image = ((image + img * 255) / 2).astype(np.uint8) return image description = """ #
Expedit-SAM (Expedite Segment Anything Model without any training)
Github link: [Link](https://github.com/Expedit-LargeScale-Vision-Transformer/Expedit-SAM) You can select the speed mode you want to use from the "Speed Mode" dropdown menu and click "Run" to segment the image you uploaded to the "Input Image" box. """ if (SPACE_ID := os.getenv('SPACE_ID')) is not None: description += f'\n

For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings. Duplicate Space

' def main(): with gr.Blocks() as demo: gr.Markdown(description) with gr.Column(): with gr.Row(): with gr.Column(): input_image = gr.Image(label="Input Image") speed_mode = gr.Dropdown( choices=list(hourglass_args.keys()), value="baseline", label="Speed Mode", multiselect=False, ) with gr.Row(): run_btn = gr.Button(label="Run", id="run", value="Run") clear_btn = gr.Button(label="Clear", id="clear", value="Clear") output_image = gr.Image(label="Output Image") gr.Examples( examples=[ ["./notebooks/images/dog.jpg"], ["notebooks/images/groceries.jpg"], ["notebooks/images/truck.jpg"], ], inputs=[input_image], outputs=[output_image], fn=predict, ) run_btn.click( fn=predict, inputs=[input_image, speed_mode], outputs=output_image ) clear_btn.click( fn=lambda: [None, None], inputs=None, outputs=[input_image, output_image], queue=False, ) demo.queue() demo.launch() if __name__ == "__main__": main()