# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from copy import deepcopy from typing import List, Optional, Union import numpy as np import PIL import torch import torch.nn.functional as F from PIL import Image from transformers import ( XLMRobertaTokenizer, ) from ...models import UNet2DConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDIMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) from .text_encoder import MultilingualCLIP logger = logging.get_logger(__name__) # pylint: disable=invalid-name EXAMPLE_DOC_STRING = """ Examples: ```py >>> from diffusers import KandinskyInpaintPipeline, KandinskyPriorPipeline >>> from diffusers.utils import load_image >>> import torch >>> import numpy as np >>> pipe_prior = KandinskyPriorPipeline.from_pretrained( ... "kandinsky-community/kandinsky-2-1-prior", torch_dtype=torch.float16 ... ) >>> pipe_prior.to("cuda") >>> prompt = "a hat" >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False) >>> pipe = KandinskyInpaintPipeline.from_pretrained( ... "kandinsky-community/kandinsky-2-1-inpaint", torch_dtype=torch.float16 ... ) >>> pipe.to("cuda") >>> init_image = load_image( ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" ... "/kandinsky/cat.png" ... ) >>> mask = np.ones((768, 768), dtype=np.float32) >>> mask[:250, 250:-250] = 0 >>> out = pipe( ... prompt, ... image=init_image, ... mask_image=mask, ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... height=768, ... width=768, ... num_inference_steps=50, ... ) >>> image = out.images[0] >>> image.save("cat_with_hat.png") ``` """ def get_new_h_w(h, w, scale_factor=8): new_h = h // scale_factor**2 if h % scale_factor**2 != 0: new_h += 1 new_w = w // scale_factor**2 if w % scale_factor**2 != 0: new_w += 1 return new_h * scale_factor, new_w * scale_factor def prepare_mask(masks): prepared_masks = [] for mask in masks: old_mask = deepcopy(mask) for i in range(mask.shape[1]): for j in range(mask.shape[2]): if old_mask[0][i][j] == 1: continue if i != 0: mask[:, i - 1, j] = 0 if j != 0: mask[:, i, j - 1] = 0 if i != 0 and j != 0: mask[:, i - 1, j - 1] = 0 if i != mask.shape[1] - 1: mask[:, i + 1, j] = 0 if j != mask.shape[2] - 1: mask[:, i, j + 1] = 0 if i != mask.shape[1] - 1 and j != mask.shape[2] - 1: mask[:, i + 1, j + 1] = 0 prepared_masks.append(mask) return torch.stack(prepared_masks, dim=0) def prepare_mask_and_masked_image(image, mask, height, width): r""" Prepares a pair (mask, image) to be consumed by the Kandinsky inpaint pipeline. This means that those inputs will be converted to ``torch.Tensor`` with shapes ``batch x channels x height x width`` where ``channels`` is ``3`` for the ``image`` and ``1`` for the ``mask``. The ``image`` will be converted to ``torch.float32`` and normalized to be in ``[-1, 1]``. The ``mask`` will be binarized (``mask > 0.5``) and cast to ``torch.float32`` too. Args: image (Union[np.array, PIL.Image, torch.Tensor]): The image to inpaint. It can be a ``PIL.Image``, or a ``height x width x 3`` ``np.array`` or a ``channels x height x width`` ``torch.Tensor`` or a ``batch x channels x height x width`` ``torch.Tensor``. mask (_type_): The mask to apply to the image, i.e. regions to inpaint. It can be a ``PIL.Image``, or a ``height x width`` ``np.array`` or a ``1 x height x width`` ``torch.Tensor`` or a ``batch x 1 x height x width`` ``torch.Tensor``. height (`int`, *optional*, defaults to 512): The height in pixels of the generated image. width (`int`, *optional*, defaults to 512): The width in pixels of the generated image. Raises: ValueError: ``torch.Tensor`` images should be in the ``[-1, 1]`` range. ValueError: ``torch.Tensor`` mask should be in the ``[0, 1]`` range. ValueError: ``mask`` and ``image`` should have the same spatial dimensions. TypeError: ``mask`` is a ``torch.Tensor`` but ``image`` is not (ot the other way around). Returns: tuple[torch.Tensor]: The pair (mask, image) as ``torch.Tensor`` with 4 dimensions: ``batch x channels x height x width``. """ if image is None: raise ValueError("`image` input cannot be undefined.") if mask is None: raise ValueError("`mask_image` input cannot be undefined.") if isinstance(image, torch.Tensor): if not isinstance(mask, torch.Tensor): raise TypeError(f"`image` is a torch.Tensor but `mask` (type: {type(mask)} is not") # Batch single image if image.ndim == 3: assert image.shape[0] == 3, "Image outside a batch should be of shape (3, H, W)" image = image.unsqueeze(0) # Batch and add channel dim for single mask if mask.ndim == 2: mask = mask.unsqueeze(0).unsqueeze(0) # Batch single mask or add channel dim if mask.ndim == 3: # Single batched mask, no channel dim or single mask not batched but channel dim if mask.shape[0] == 1: mask = mask.unsqueeze(0) # Batched masks no channel dim else: mask = mask.unsqueeze(1) assert image.ndim == 4 and mask.ndim == 4, "Image and Mask must have 4 dimensions" assert image.shape[-2:] == mask.shape[-2:], "Image and Mask must have the same spatial dimensions" assert image.shape[0] == mask.shape[0], "Image and Mask must have the same batch size" # Check image is in [-1, 1] if image.min() < -1 or image.max() > 1: raise ValueError("Image should be in [-1, 1] range") # Check mask is in [0, 1] if mask.min() < 0 or mask.max() > 1: raise ValueError("Mask should be in [0, 1] range") # Binarize mask mask[mask < 0.5] = 0 mask[mask >= 0.5] = 1 # Image as float32 image = image.to(dtype=torch.float32) elif isinstance(mask, torch.Tensor): raise TypeError(f"`mask` is a torch.Tensor but `image` (type: {type(image)} is not") else: # preprocess image if isinstance(image, (PIL.Image.Image, np.ndarray)): image = [image] if isinstance(image, list) and isinstance(image[0], PIL.Image.Image): # resize all images w.r.t passed height an width image = [i.resize((width, height), resample=Image.BICUBIC, reducing_gap=1) for i in image] image = [np.array(i.convert("RGB"))[None, :] for i in image] image = np.concatenate(image, axis=0) elif isinstance(image, list) and isinstance(image[0], np.ndarray): image = np.concatenate([i[None, :] for i in image], axis=0) image = image.transpose(0, 3, 1, 2) image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0 # preprocess mask if isinstance(mask, (PIL.Image.Image, np.ndarray)): mask = [mask] if isinstance(mask, list) and isinstance(mask[0], PIL.Image.Image): mask = [i.resize((width, height), resample=PIL.Image.LANCZOS) for i in mask] mask = np.concatenate([np.array(m.convert("L"))[None, None, :] for m in mask], axis=0) mask = mask.astype(np.float32) / 255.0 elif isinstance(mask, list) and isinstance(mask[0], np.ndarray): mask = np.concatenate([m[None, None, :] for m in mask], axis=0) mask[mask < 0.5] = 0 mask[mask >= 0.5] = 1 mask = torch.from_numpy(mask) return mask, image class KandinskyInpaintPipeline(DiffusionPipeline): """ Pipeline for text-guided image inpainting using Kandinsky2.1 This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) Args: text_encoder ([`MultilingualCLIP`]): Frozen text-encoder. tokenizer ([`XLMRobertaTokenizer`]): Tokenizer of class scheduler ([`DDIMScheduler`]): A scheduler to be used in combination with `unet` to generate image latents. unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the image embedding. movq ([`VQModel`]): MoVQ image encoder and decoder """ def __init__( self, text_encoder: MultilingualCLIP, movq: VQModel, tokenizer: XLMRobertaTokenizer, unet: UNet2DConditionModel, scheduler: DDIMScheduler, ): super().__init__() self.register_modules( text_encoder=text_encoder, movq=movq, tokenizer=tokenizer, unet=unet, scheduler=scheduler, ) self.movq_scale_factor = 2 ** (len(self.movq.config.block_out_channels) - 1) # Copied from diffusers.pipelines.unclip.pipeline_unclip.UnCLIPPipeline.prepare_latents def prepare_latents(self, shape, dtype, device, generator, latents, scheduler): if latents is None: latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) else: if latents.shape != shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}") latents = latents.to(device) latents = latents * scheduler.init_noise_sigma return latents def _encode_prompt( self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, ): batch_size = len(prompt) if isinstance(prompt, list) else 1 # get prompt text embeddings text_inputs = self.tokenizer( prompt, padding="max_length", max_length=77, truncation=True, return_attention_mask=True, add_special_tokens=True, return_tensors="pt", ) text_input_ids = text_inputs.input_ids untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids): removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) text_input_ids = text_input_ids.to(device) text_mask = text_inputs.attention_mask.to(device) prompt_embeds, text_encoder_hidden_states = self.text_encoder( input_ids=text_input_ids, attention_mask=text_mask ) prompt_embeds = prompt_embeds.repeat_interleave(num_images_per_prompt, dim=0) text_encoder_hidden_states = text_encoder_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) text_mask = text_mask.repeat_interleave(num_images_per_prompt, dim=0) if do_classifier_free_guidance: uncond_tokens: List[str] if negative_prompt is None: uncond_tokens = [""] * batch_size elif type(prompt) is not type(negative_prompt): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" f" {type(prompt)}." ) elif isinstance(negative_prompt, str): uncond_tokens = [negative_prompt] elif batch_size != len(negative_prompt): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" " the batch size of `prompt`." ) else: uncond_tokens = negative_prompt uncond_input = self.tokenizer( uncond_tokens, padding="max_length", max_length=77, truncation=True, return_attention_mask=True, add_special_tokens=True, return_tensors="pt", ) uncond_text_input_ids = uncond_input.input_ids.to(device) uncond_text_mask = uncond_input.attention_mask.to(device) negative_prompt_embeds, uncond_text_encoder_hidden_states = self.text_encoder( input_ids=uncond_text_input_ids, attention_mask=uncond_text_mask ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method seq_len = negative_prompt_embeds.shape[1] negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt) negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len) seq_len = uncond_text_encoder_hidden_states.shape[1] uncond_text_encoder_hidden_states = uncond_text_encoder_hidden_states.repeat(1, num_images_per_prompt, 1) uncond_text_encoder_hidden_states = uncond_text_encoder_hidden_states.view( batch_size * num_images_per_prompt, seq_len, -1 ) uncond_text_mask = uncond_text_mask.repeat_interleave(num_images_per_prompt, dim=0) # done duplicates # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) text_encoder_hidden_states = torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states]) text_mask = torch.cat([uncond_text_mask, text_mask]) return prompt_embeds, text_encoder_hidden_states, text_mask def enable_sequential_cpu_offload(self, gpu_id=0): r""" Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, the pipeline's models have their state dicts saved to CPU and then are moved to a `torch.device('meta') and loaded to GPU only when their specific submodule has its `forward` method called. """ if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`") device = torch.device(f"cuda:{gpu_id}") models = [ self.unet, self.text_encoder, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(cpu_offloaded_model, device) def enable_model_cpu_offload(self, gpu_id=0): r""" Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward` method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with `enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`. """ if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"): from accelerate import cpu_offload_with_hook else: raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.") device = torch.device(f"cuda:{gpu_id}") if self.device.type != "cpu": self.to("cpu", silence_dtype_warnings=True) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) hook = None for cpu_offloaded_model in [self.text_encoder, self.unet, self.movq]: _, hook = cpu_offload_with_hook(cpu_offloaded_model, device, prev_module_hook=hook) if self.safety_checker is not None: _, hook = cpu_offload_with_hook(self.safety_checker, device, prev_module_hook=hook) # We'll offload the last model manually. self.final_offload_hook = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def _execution_device(self): r""" Returns the device on which the pipeline's models will be executed. After calling `pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module hooks. """ if not hasattr(self.unet, "_hf_hook"): return self.device for module in self.unet.modules(): if ( hasattr(module, "_hf_hook") and hasattr(module._hf_hook, "execution_device") and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device) return self.device @torch.no_grad() @replace_example_docstring(EXAMPLE_DOC_STRING) def __call__( self, prompt: Union[str, List[str]], image: Union[torch.FloatTensor, PIL.Image.Image], mask_image: Union[torch.FloatTensor, PIL.Image.Image, np.ndarray], image_embeds: torch.FloatTensor, negative_image_embeds: torch.FloatTensor, negative_prompt: Optional[Union[str, List[str]]] = None, height: int = 512, width: int = 512, num_inference_steps: int = 100, guidance_scale: float = 4.0, num_images_per_prompt: int = 1, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.FloatTensor] = None, output_type: Optional[str] = "pil", return_dict: bool = True, ): """ Function invoked when calling the pipeline for generation. Args: prompt (`str` or `List[str]`): The prompt or prompts to guide the image generation. image (`torch.FloatTensor`, `PIL.Image.Image` or `np.ndarray`): `Image`, or tensor representing an image batch, that will be used as the starting point for the process. mask_image (`PIL.Image.Image`,`torch.FloatTensor` or `np.ndarray`): `Image`, or a tensor representing an image batch, to mask `image`. White pixels in the mask will be repainted, while black pixels will be preserved. You can pass a pytorch tensor as mask only if the image you passed is a pytorch tensor, and it should contain one color channel (L) instead of 3, so the expected shape would be either `(B, 1, H, W,)`, `(B, H, W)`, `(1, H, W)` or `(H, W)` If image is an PIL image or numpy array, mask should also be a either PIL image or numpy array. If it is a PIL image, it will be converted to a single channel (luminance) before use. If it is a nummpy array, the expected shape is `(H, W)`. image_embeds (`torch.FloatTensor` or `List[torch.FloatTensor]`): The clip image embeddings for text prompt, that will be used to condition the image generation. negative_image_embeds (`torch.FloatTensor` or `List[torch.FloatTensor]`): The clip image embeddings for negative text prompt, will be used to condition the image generation. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). height (`int`, *optional*, defaults to 512): The height in pixels of the generated image. width (`int`, *optional*, defaults to 512): The width in pixels of the generated image. num_inference_steps (`int`, *optional*, defaults to 100): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. guidance_scale (`float`, *optional*, defaults to 4.0): Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality. num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. generator (`torch.Generator` or `List[torch.Generator]`, *optional*): One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.FloatTensor`, *optional*): Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied random `generator`. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generate image. Choose between: `"pil"` (`PIL.Image.Image`), `"np"` (`np.array`) or `"pt"` (`torch.Tensor`). return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple. Examples: Returns: [`~pipelines.ImagePipelineOutput`] or `tuple` """ # Define call parameters if isinstance(prompt, str): batch_size = 1 elif isinstance(prompt, list): batch_size = len(prompt) else: raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") device = self._execution_device batch_size = batch_size * num_images_per_prompt do_classifier_free_guidance = guidance_scale > 1.0 prompt_embeds, text_encoder_hidden_states, _ = self._encode_prompt( prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt ) if isinstance(image_embeds, list): image_embeds = torch.cat(image_embeds, dim=0) if isinstance(negative_image_embeds, list): negative_image_embeds = torch.cat(negative_image_embeds, dim=0) if do_classifier_free_guidance: image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) negative_image_embeds = negative_image_embeds.repeat_interleave(num_images_per_prompt, dim=0) image_embeds = torch.cat([negative_image_embeds, image_embeds], dim=0).to( dtype=prompt_embeds.dtype, device=device ) # preprocess image and mask mask_image, image = prepare_mask_and_masked_image(image, mask_image, height, width) image = image.to(dtype=prompt_embeds.dtype, device=device) image = self.movq.encode(image)["latents"] mask_image = mask_image.to(dtype=prompt_embeds.dtype, device=device) image_shape = tuple(image.shape[-2:]) mask_image = F.interpolate( mask_image, image_shape, mode="nearest", ) mask_image = prepare_mask(mask_image) masked_image = image * mask_image mask_image = mask_image.repeat_interleave(num_images_per_prompt, dim=0) masked_image = masked_image.repeat_interleave(num_images_per_prompt, dim=0) if do_classifier_free_guidance: mask_image = mask_image.repeat(2, 1, 1, 1) masked_image = masked_image.repeat(2, 1, 1, 1) self.scheduler.set_timesteps(num_inference_steps, device=device) timesteps_tensor = self.scheduler.timesteps num_channels_latents = self.movq.config.latent_channels # get h, w for latents sample_height, sample_width = get_new_h_w(height, width, self.movq_scale_factor) # create initial latent latents = self.prepare_latents( (batch_size, num_channels_latents, sample_height, sample_width), text_encoder_hidden_states.dtype, device, generator, latents, self.scheduler, ) # Check that sizes of mask, masked image and latents match with expected num_channels_mask = mask_image.shape[1] num_channels_masked_image = masked_image.shape[1] if num_channels_latents + num_channels_mask + num_channels_masked_image != self.unet.config.in_channels: raise ValueError( f"Incorrect configuration settings! The config of `pipeline.unet`: {self.unet.config} expects" f" {self.unet.config.in_channels} but received `num_channels_latents`: {num_channels_latents} +" f" `num_channels_mask`: {num_channels_mask} + `num_channels_masked_image`: {num_channels_masked_image}" f" = {num_channels_latents+num_channels_masked_image+num_channels_mask}. Please verify the config of" " `pipeline.unet` or your `mask_image` or `image` input." ) for i, t in enumerate(self.progress_bar(timesteps_tensor)): # expand the latents if we are doing classifier free guidance latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents latent_model_input = torch.cat([latent_model_input, masked_image, mask_image], dim=1) added_cond_kwargs = {"text_embeds": prompt_embeds, "image_embeds": image_embeds} noise_pred = self.unet( sample=latent_model_input, timestep=t, encoder_hidden_states=text_encoder_hidden_states, added_cond_kwargs=added_cond_kwargs, return_dict=False, )[0] if do_classifier_free_guidance: noise_pred, variance_pred = noise_pred.split(latents.shape[1], dim=1) noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) _, variance_pred_text = variance_pred.chunk(2) noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) noise_pred = torch.cat([noise_pred, variance_pred_text], dim=1) if not ( hasattr(self.scheduler.config, "variance_type") and self.scheduler.config.variance_type in ["learned", "learned_range"] ): noise_pred, _ = noise_pred.split(latents.shape[1], dim=1) # compute the previous noisy sample x_t -> x_t-1 latents = self.scheduler.step( noise_pred, t, latents, generator=generator, ).prev_sample # post-processing image = self.movq.decode(latents, force_not_quantize=True)["sample"] if output_type not in ["pt", "np", "pil"]: raise ValueError(f"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}") if output_type in ["np", "pil"]: image = image * 0.5 + 0.5 image = image.clamp(0, 1) image = image.cpu().permute(0, 2, 3, 1).float().numpy() if output_type == "pil": image = self.numpy_to_pil(image) if not return_dict: return (image,) return ImagePipelineOutput(images=image)