#!/bin/bash # bash script to evaluate the model # TODO ################### Chose CaPE type ########################## # 6DoF cape_type="6DoF" pretrained_model="kxic/eschernet-6dof" ## 4DoF #cape_type="4DoF" #pretrained_model="kxic/eschernet-4dof" ################### Chose CaPE type ########################## # TODO ################### Chose data type ########################## # demo data_type="GSO25" T_ins=(1 2 3 5 10) data_dir="./demo/GSO30" ## GSO #data_type="GSO25" # GSO25, GSO3D, GSO100, NeRF, RTMV #T_ins=(1 2 3 5 10) #data_dir="/home/xin/data/EscherNet/Data/GSO30/" ## RTMV #data_type="RTMV" #T_ins=(1 2 3 5 10) #data_dir="/home/xin/data/RTMV/40_scenes/" ## NeRF #data_type="NeRF" #T_ins=(1 2 3 5 10 20 50 100) #data_dir="/home/xin/data/nerf/nerf_synthetic" ## Real World Franka Recordings #data_type="Franka" #T_ins=(5) #data_dir="/home/xin/data/EscherNet/Data/Franka16/" ## MVDream, 4 views to 100 #data_type='MVDream' #T_ins=(4) #data_dir="/home/xin/data/EscherNet/Data/MVDream/" ## Text2Img, 1 view to 100 #data_type='Text2Img' #T_ins=(1) #data_dir="/home/xin/data/EscherNet/Data/Text2Img/" ################### Chose data type ########################## # run for T_in in "${T_ins[@]}"; do python eval_eschernet.py --pretrained_model_name_or_path "$pretrained_model" \ --data_dir "$data_dir" \ --data_type "$data_type" \ --cape_type "$cape_type" \ --T_in "$T_in" done