# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, logging, randn_tensor from .scheduling_utils import SchedulerMixin logger = logging.get_logger(__name__) # pylint: disable=invalid-name @dataclass class CMStochasticIterativeSchedulerOutput(BaseOutput): """ Output class for the scheduler's step function output. Args: prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the denoising loop. """ prev_sample: torch.FloatTensor class CMStochasticIterativeScheduler(SchedulerMixin, ConfigMixin): """ Multistep and onestep sampling for consistency models from Song et al. 2023 [1]. This implements Algorithm 1 in the paper [1]. [1] Song, Yang and Dhariwal, Prafulla and Chen, Mark and Sutskever, Ilya. "Consistency Models" https://arxiv.org/pdf/2303.01469 [2] Karras, Tero, et al. "Elucidating the Design Space of Diffusion-Based Generative Models." https://arxiv.org/abs/2206.00364 [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__` function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`. [`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and [`~SchedulerMixin.from_pretrained`] functions. Args: num_train_timesteps (`int`): number of diffusion steps used to train the model. sigma_min (`float`): Minimum noise magnitude in the sigma schedule. This was set to 0.002 in the original implementation. sigma_max (`float`): Maximum noise magnitude in the sigma schedule. This was set to 80.0 in the original implementation. sigma_data (`float`): The standard deviation of the data distribution, following the EDM paper [2]. This was set to 0.5 in the original implementation, which is also the original value suggested in the EDM paper. s_noise (`float`): The amount of additional noise to counteract loss of detail during sampling. A reasonable range is [1.000, 1.011]. This was set to 1.0 in the original implementation. rho (`float`): The rho parameter used for calculating the Karras sigma schedule, introduced in the EDM paper [2]. This was set to 7.0 in the original implementation, which is also the original value suggested in the EDM paper. clip_denoised (`bool`): Whether to clip the denoised outputs to `(-1, 1)`. Defaults to `True`. timesteps (`List` or `np.ndarray` or `torch.Tensor`, *optional*): Optionally, an explicit timestep schedule can be specified. The timesteps are expected to be in increasing order. """ order = 1 @register_to_config def __init__( self, num_train_timesteps: int = 40, sigma_min: float = 0.002, sigma_max: float = 80.0, sigma_data: float = 0.5, s_noise: float = 1.0, rho: float = 7.0, clip_denoised: bool = True, ): # standard deviation of the initial noise distribution self.init_noise_sigma = sigma_max ramp = np.linspace(0, 1, num_train_timesteps) sigmas = self._convert_to_karras(ramp) timesteps = self.sigma_to_t(sigmas) # setable values self.num_inference_steps = None self.sigmas = torch.from_numpy(sigmas) self.timesteps = torch.from_numpy(timesteps) self.custom_timesteps = False self.is_scale_input_called = False def index_for_timestep(self, timestep, schedule_timesteps=None): if schedule_timesteps is None: schedule_timesteps = self.timesteps indices = (schedule_timesteps == timestep).nonzero() return indices.item() def scale_model_input( self, sample: torch.FloatTensor, timestep: Union[float, torch.FloatTensor] ) -> torch.FloatTensor: """ Scales the consistency model input by `(sigma**2 + sigma_data**2) ** 0.5`, following the EDM model. Args: sample (`torch.FloatTensor`): input sample timestep (`float` or `torch.FloatTensor`): the current timestep in the diffusion chain Returns: `torch.FloatTensor`: scaled input sample """ # Get sigma corresponding to timestep if isinstance(timestep, torch.Tensor): timestep = timestep.to(self.timesteps.device) step_idx = self.index_for_timestep(timestep) sigma = self.sigmas[step_idx] sample = sample / ((sigma**2 + self.config.sigma_data**2) ** 0.5) self.is_scale_input_called = True return sample def sigma_to_t(self, sigmas: Union[float, np.ndarray]): """ Gets scaled timesteps from the Karras sigmas, for input to the consistency model. Args: sigmas (`float` or `np.ndarray`): single Karras sigma or array of Karras sigmas Returns: `float` or `np.ndarray`: scaled input timestep or scaled input timestep array """ if not isinstance(sigmas, np.ndarray): sigmas = np.array(sigmas, dtype=np.float64) timesteps = 1000 * 0.25 * np.log(sigmas + 1e-44) return timesteps def set_timesteps( self, num_inference_steps: Optional[int] = None, device: Union[str, torch.device] = None, timesteps: Optional[List[int]] = None, ): """ Sets the timesteps used for the diffusion chain. Supporting function to be run before inference. Args: num_inference_steps (`int`): the number of diffusion steps used when generating samples with a pre-trained model. device (`str` or `torch.device`, optional): the device to which the timesteps should be moved to. If `None`, the timesteps are not moved. timesteps (`List[int]`, optional): custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default timestep spacing strategy of equal spacing between timesteps is used. If passed, `num_inference_steps` must be `None`. """ if num_inference_steps is None and timesteps is None: raise ValueError("Exactly one of `num_inference_steps` or `timesteps` must be supplied.") if num_inference_steps is not None and timesteps is not None: raise ValueError("Can only pass one of `num_inference_steps` or `timesteps`.") # Follow DDPMScheduler custom timesteps logic if timesteps is not None: for i in range(1, len(timesteps)): if timesteps[i] >= timesteps[i - 1]: raise ValueError("`timesteps` must be in descending order.") if timesteps[0] >= self.config.num_train_timesteps: raise ValueError( f"`timesteps` must start before `self.config.train_timesteps`:" f" {self.config.num_train_timesteps}." ) timesteps = np.array(timesteps, dtype=np.int64) self.custom_timesteps = True else: if num_inference_steps > self.config.num_train_timesteps: raise ValueError( f"`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:" f" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle" f" maximal {self.config.num_train_timesteps} timesteps." ) self.num_inference_steps = num_inference_steps step_ratio = self.config.num_train_timesteps // self.num_inference_steps timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.int64) self.custom_timesteps = False # Map timesteps to Karras sigmas directly for multistep sampling # See https://github.com/openai/consistency_models/blob/main/cm/karras_diffusion.py#L675 num_train_timesteps = self.config.num_train_timesteps ramp = timesteps[::-1].copy() ramp = ramp / (num_train_timesteps - 1) sigmas = self._convert_to_karras(ramp) timesteps = self.sigma_to_t(sigmas) sigmas = np.concatenate([sigmas, [self.sigma_min]]).astype(np.float32) self.sigmas = torch.from_numpy(sigmas).to(device=device) if str(device).startswith("mps"): # mps does not support float64 self.timesteps = torch.from_numpy(timesteps).to(device, dtype=torch.float32) else: self.timesteps = torch.from_numpy(timesteps).to(device=device) # Modified _convert_to_karras implementation that takes in ramp as argument def _convert_to_karras(self, ramp): """Constructs the noise schedule of Karras et al. (2022).""" sigma_min: float = self.config.sigma_min sigma_max: float = self.config.sigma_max rho = self.config.rho min_inv_rho = sigma_min ** (1 / rho) max_inv_rho = sigma_max ** (1 / rho) sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas def get_scalings(self, sigma): sigma_data = self.config.sigma_data c_skip = sigma_data**2 / (sigma**2 + sigma_data**2) c_out = sigma * sigma_data / (sigma**2 + sigma_data**2) ** 0.5 return c_skip, c_out def get_scalings_for_boundary_condition(self, sigma): """ Gets the scalings used in the consistency model parameterization, following Appendix C of the original paper. This enforces the consistency model boundary condition. Note that `epsilon` in the equations for c_skip and c_out is set to sigma_min. Args: sigma (`torch.FloatTensor`): The current sigma in the Karras sigma schedule. Returns: `tuple`: A two-element tuple where c_skip (which weights the current sample) is the first element and c_out (which weights the consistency model output) is the second element. """ sigma_min = self.config.sigma_min sigma_data = self.config.sigma_data c_skip = sigma_data**2 / ((sigma - sigma_min) ** 2 + sigma_data**2) c_out = (sigma - sigma_min) * sigma_data / (sigma**2 + sigma_data**2) ** 0.5 return c_skip, c_out def step( self, model_output: torch.FloatTensor, timestep: Union[float, torch.FloatTensor], sample: torch.FloatTensor, generator: Optional[torch.Generator] = None, return_dict: bool = True, ) -> Union[CMStochasticIterativeSchedulerOutput, Tuple]: """ Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion process from the learned model outputs (most often the predicted noise). Args: model_output (`torch.FloatTensor`): direct output from learned diffusion model. timestep (`float`): current timestep in the diffusion chain. sample (`torch.FloatTensor`): current instance of sample being created by diffusion process. generator (`torch.Generator`, *optional*): Random number generator. return_dict (`bool`): option for returning tuple rather than EulerDiscreteSchedulerOutput class Returns: [`~schedulers.scheduling_utils.CMStochasticIterativeSchedulerOutput`] or `tuple`: [`~schedulers.scheduling_utils.CMStochasticIterativeSchedulerOutput`] if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor. """ if ( isinstance(timestep, int) or isinstance(timestep, torch.IntTensor) or isinstance(timestep, torch.LongTensor) ): raise ValueError( ( "Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to" f" `{self.__class__}.step()` is not supported. Make sure to pass" " one of the `scheduler.timesteps` as a timestep." ), ) if not self.is_scale_input_called: logger.warning( "The `scale_model_input` function should be called before `step` to ensure correct denoising. " "See `StableDiffusionPipeline` for a usage example." ) if isinstance(timestep, torch.Tensor): timestep = timestep.to(self.timesteps.device) sigma_min = self.config.sigma_min sigma_max = self.config.sigma_max step_index = self.index_for_timestep(timestep) # sigma_next corresponds to next_t in original implementation sigma = self.sigmas[step_index] if step_index + 1 < self.config.num_train_timesteps: sigma_next = self.sigmas[step_index + 1] else: # Set sigma_next to sigma_min sigma_next = self.sigmas[-1] # Get scalings for boundary conditions c_skip, c_out = self.get_scalings_for_boundary_condition(sigma) # 1. Denoise model output using boundary conditions denoised = c_out * model_output + c_skip * sample if self.config.clip_denoised: denoised = denoised.clamp(-1, 1) # 2. Sample z ~ N(0, s_noise^2 * I) # Noise is not used for onestep sampling. if len(self.timesteps) > 1: noise = randn_tensor( model_output.shape, dtype=model_output.dtype, device=model_output.device, generator=generator ) else: noise = torch.zeros_like(model_output) z = noise * self.config.s_noise sigma_hat = sigma_next.clamp(min=sigma_min, max=sigma_max) # 3. Return noisy sample # tau = sigma_hat, eps = sigma_min prev_sample = denoised + z * (sigma_hat**2 - sigma_min**2) ** 0.5 if not return_dict: return (prev_sample,) return CMStochasticIterativeSchedulerOutput(prev_sample=prev_sample) # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.add_noise def add_noise( self, original_samples: torch.FloatTensor, noise: torch.FloatTensor, timesteps: torch.FloatTensor, ) -> torch.FloatTensor: # Make sure sigmas and timesteps have the same device and dtype as original_samples sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype) if original_samples.device.type == "mps" and torch.is_floating_point(timesteps): # mps does not support float64 schedule_timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32) timesteps = timesteps.to(original_samples.device, dtype=torch.float32) else: schedule_timesteps = self.timesteps.to(original_samples.device) timesteps = timesteps.to(original_samples.device) step_indices = [(schedule_timesteps == t).nonzero().item() for t in timesteps] sigma = sigmas[step_indices].flatten() while len(sigma.shape) < len(original_samples.shape): sigma = sigma.unsqueeze(-1) noisy_samples = original_samples + noise * sigma return noisy_samples def __len__(self): return self.config.num_train_timesteps