import streamlit as st from transformers import DistilBertTokenizer, DistilBertForSequenceClassification import torch # Load optimized model (use pruned, quantized, or distilled model here) model = DistilBertForSequenceClassification.from_pretrained('path_to_optimized_model') tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased') # Function to generate response def get_response(query): inputs = tokenizer(query, return_tensors="pt", padding=True, truncation=True) outputs = model(**inputs) logits = outputs.logits prediction = torch.argmax(logits, dim=-1) return prediction.item() # Return predicted class index # Streamlit UI st.title("Conversational Financial Assistant") st.write("Ask me any financial question!") # Input box user_input = st.text_input("Enter your question:") # Generate response when input is provided if user_input: prediction = get_response(user_input) response = f"Predicted Class: {prediction}" # You can map this to a response based on your classes st.write(response)