File size: 12,275 Bytes
3b52253
 
 
 
 
 
 
 
 
 
 
 
 
d187d01
3b52253
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d187d01
3b52253
 
 
 
 
 
 
 
 
b400265
3b52253
 
b400265
3b52253
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d187d01
3b52253
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
# import gradio as gr
# import subprocess


# def greet(name):
#    cmd_out = subprocess.run(["pip", "list"], stdout=subprocess.PIPE)
#    return cmd_out.stdout.decode("utf-8")


# iface = gr.Interface(fn=greet, inputs="text", outputs="text")
# iface.launch()


import gradio as gr
from datasets import load_dataset
from PIL import Image
import re
import os
import requests

from share_btn import community_icon_html, loading_icon_html, share_js

model_id = "runwayml/stable-diffusion-v1-5"
device = "cuda"

word_list_dataset = load_dataset(
    "stabilityai/word-list", data_files="list.txt", use_auth_token=True
)
word_list = word_list_dataset["train"]["text"]

is_gpu_busy = False


def infer(prompt):
    global is_gpu_busy
    samples = 4
    steps = 50
    scale = 7.5
    for filter in word_list:
        if re.search(rf"\b{filter}\b", prompt):
            raise gr.Error(
                "Unsafe content found. Please try again with different prompts."
            )

    images = []
    url = os.getenv("JAX_BACKEND_URL")
    payload = {"prompt": prompt}
    images_request = requests.post(url, json=payload)
    for image in images_request.json()["images"]:
        image_b64 = f"data:image/jpeg;base64,{image}"
        images.append(image_b64)

    return images


css = """
        .gradio-container {
            font-family: 'IBM Plex Sans', sans-serif;
        }
        .gr-button {
            color: white;
            border-color: black;
            background: black;
        }
        input[type='range'] {
            accent-color: black;
        }
        .dark input[type='range'] {
            accent-color: #dfdfdf;
        }
        .container {
            max-width: 730px;
            margin: auto;
            padding-top: 1.5rem;
        }
        #gallery {
            min-height: 22rem;
            margin-bottom: 15px;
            margin-left: auto;
            margin-right: auto;
            border-bottom-right-radius: .5rem !important;
            border-bottom-left-radius: .5rem !important;
        }
        #gallery>div>.h-full {
            min-height: 20rem;
        }
        .details:hover {
            text-decoration: underline;
        }
        .gr-button {
            white-space: nowrap;
        }
        .gr-button:focus {
            border-color: rgb(147 197 253 / var(--tw-border-opacity));
            outline: none;
            box-shadow: var(--tw-ring-offset-shadow), var(--tw-ring-shadow), var(--tw-shadow, 0 0 #0000);
            --tw-border-opacity: 1;
            --tw-ring-offset-shadow: var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color);
            --tw-ring-shadow: var(--tw-ring-inset) 0 0 0 calc(3px var(--tw-ring-offset-width)) var(--tw-ring-color);
            --tw-ring-color: rgb(191 219 254 / var(--tw-ring-opacity));
            --tw-ring-opacity: .5;
        }
        #advanced-btn {
            font-size: .7rem !important;
            line-height: 19px;
            margin-top: 12px;
            margin-bottom: 12px;
            padding: 2px 8px;
            border-radius: 14px !important;
        }
        #advanced-options {
            display: none;
            margin-bottom: 20px;
        }
        .footer {
            margin-bottom: 45px;
            margin-top: 35px;
            text-align: center;
            border-bottom: 1px solid #e5e5e5;
        }
        .footer>p {
            font-size: .8rem;
            display: inline-block;
            padding: 0 10px;
            transform: translateY(10px);
            background: white;
        }
        .dark .footer {
            border-color: #303030;
        }
        .dark .footer>p {
            background: #0b0f19;
        }
        .acknowledgments h4{
            margin: 1.25em 0 .25em 0;
            font-weight: bold;
            font-size: 115%;
        }
        #container-advanced-btns{
            display: flex;
            flex-wrap: wrap;
            justify-content: space-between;
            align-items: center;
        }
        .animate-spin {
            animation: spin 1s linear infinite;
        }
        @keyframes spin {
            from {
                transform: rotate(0deg);
            }
            to {
                transform: rotate(360deg);
            }
        }
        #share-btn-container {
            display: flex; padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; width: 13rem;
        }
        #share-btn {
            all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.25rem !important; padding-bottom: 0.25rem !important;
        }
        #share-btn * {
            all: unset;
        }
        .gr-form{
            flex: 1 1 50%; border-top-right-radius: 0; border-bottom-right-radius: 0;
        }
        #prompt-container{
            gap: 0;
        }
        #share-btn-container div:nth-child(-n+2){
        width: auto !important;
        min-height: 0px !important;
        } 
"""

block = gr.Blocks(css=css)

examples = [
    [
        "The spirit of a tamagotchi wandering in the city of Paris",
        #        4,
        #        45,
        #        7.5,
        #        1024,
    ],
    [
        "A delicious ceviche cheesecake slice",
        #        4,
        #        45,
        #        7,
        #        1024,
    ],
    [
        "A pao de queijo foodcart in front of a japanese castle",
        #        4,
        #        45,
        #        7,
        #        1024,
    ],
    [
        "alone in the amusement park by Edward Hopper",
        #        4,
        #        45,
        #        7,
        #        1024,
    ],
    [
        "A large cabin on top of a sunny mountain in the style of Dreamworks, artstation",
        #        4,
        #        45,
        #        7,
        #        1024,
    ],
]


with block:
    gr.HTML(
        """
            <div style="text-align: center; max-width: 650px; margin: 0 auto; padding-top: 7px;">
              <div
                style="
                  display: inline-flex;
                  align-items: center;
                  gap: 0.8rem;
                  font-size: 1.75rem;
                "
              >
                <h1 style="font-weight: 900; margin-bottom: 7px;">
                  Stable Diffusion v1-5 Demo
                </h1>
              </div>
              <p style="margin-bottom: 10px; font-size: 94%">
                Stable Diffusion v1-5 is the latest version of the state of the art text-to-image model.<br>For faster generation you can try
      <a href="https://app.runwayml.com/ai-tools/text-to-image"
        style="text-decoration: underline;" target="_blank">text to image tool at Runway.</a>
              </p>
            </div>
        """
    )
    with gr.Group():
        with gr.Box():
            with gr.Row(elem_id="prompt-container").style(
                mobile_collapse=False, equal_height=True
            ):
                text = gr.Textbox(
                    label="Enter your prompt",
                    show_label=False,
                    max_lines=1,
                    placeholder="Enter your prompt",
                    elem_id="prompt-text-input",
                ).style(
                    border=(True, False, True, True),
                    rounded=(True, False, False, True),
                    container=False,
                )
                btn = gr.Button("Generate image").style(
                    margin=False,
                    rounded=(False, True, True, False),
                    full_width=False,
                )

        gallery = gr.Gallery(
            label="Generated images", show_label=False, elem_id="gallery"
        ).style(grid=[2], height="auto")

        with gr.Group(elem_id="container-advanced-btns"):
            advanced_button = gr.Button("Advanced options", elem_id="advanced-btn")
            with gr.Group(elem_id="share-btn-container"):
                community_icon = gr.HTML(community_icon_html)
                loading_icon = gr.HTML(loading_icon_html)
                share_button = gr.Button("Share to community", elem_id="share-btn")

        with gr.Row(elem_id="advanced-options"):
            gr.Markdown("Advanced settings are temporarily unavailable")
            samples = gr.Slider(label="Images", minimum=1, maximum=4, value=4, step=1)
            steps = gr.Slider(label="Steps", minimum=1, maximum=50, value=45, step=1)
            scale = gr.Slider(
                label="Guidance Scale", minimum=0, maximum=50, value=7.5, step=0.1
            )
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=2147483647,
                step=1,
                randomize=True,
            )

        ex = gr.Examples(
            examples=examples,
            fn=infer,
            inputs=text,
            outputs=[gallery],
            cache_examples=True,
            postprocess=False,
        )
        ex.dataset.headers = [""]

        text.submit(infer, inputs=text, outputs=[gallery], postprocess=False)
        btn.click(infer, inputs=text, outputs=[gallery], postprocess=False)

        advanced_button.click(
            None,
            [],
            text,
            _js="""
            () => {
                const options = document.querySelector("body > gradio-app").querySelector("#advanced-options");
                options.style.display = ["none", ""].includes(options.style.display) ? "flex" : "none";
            }""",
        )
        share_button.click(
            None,
            [],
            [],
            _js=share_js,
        )
        gr.HTML(
            """
                <div class="footer">
                    <p>Model by <a href="https://huggingface.co/CompVis" style="text-decoration: underline;" target="_blank">CompVis</a> and <a href="https://runwayml.com/" style="text-decoration: underline;" target="_blank">Runway</a> supported by <a href="https://huggingface.co/stabilityai" style="text-decoration: underline;" target="_blank">Stability AI</a> - backend running JAX on TPUs due to generous support of <a href="https://sites.research.google/trc/about/" style="text-decoration: underline;" target="_blank">Google TRC program</a> - Gradio Demo by 🤗 Hugging Face
                    </p>
                </div>
                <div class="acknowledgments">
                    <p><h4>LICENSE</h4>
The model is licensed with a <a href="https://huggingface.co/spaces/CompVis/stable-diffusion-license" style="text-decoration: underline;" target="_blank">CreativeML Open RAIL-M</a> license. The authors claim no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in this license. The license forbids you from sharing any content that violates any laws, produce any harm to a person, disseminate any personal information that would be meant for harm, spread misinformation and target vulnerable groups. For the full list of restrictions please <a href="https://huggingface.co/spaces/CompVis/stable-diffusion-license" target="_blank" style="text-decoration: underline;" target="_blank">read the license</a></p>
                    <p><h4>Biases and content acknowledgment</h4>
Despite how impressive being able to turn text into image is, beware to the fact that this model may output content that reinforces or exacerbates societal biases, as well as realistic faces, pornography and violence. The model was trained on the <a href="https://laion.ai/blog/laion-5b/" style="text-decoration: underline;" target="_blank">LAION-5B dataset</a>, which scraped non-curated image-text-pairs from the internet (the exception being the removal of illegal content) and is meant for research purposes. You can read more in the <a href="https://huggingface.co/runwayml/stable-diffusion-v1-5" style="text-decoration: underline;" target="_blank">model card</a></p>
               </div>
           """
        )

block.queue(concurrency_count=40, max_size=20).launch(max_threads=150)