# Copyright (c) Kotoba Technologies, Inc. and affiliates. # All rights reserved. # # Redistribution and use in source and binary forms, with or without modification, are permitted # provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this list of # conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, this # list of conditions and the following disclaimer in the documentation and/or other # materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its contributors # may be used to endorse or promote products derived from this software without # specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY EXPRESS OR # IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND # FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from dataclasses import dataclass from functools import reduce from math import gcd from typing import Optional, Tuple import torch import torch.nn as nn from torch import Tensor from torch.nn import functional as F from fam.llm.utils import get_default_dtype import logging # Adjust the logging level logger = logging.getLogger("torch") logger.setLevel(logging.ERROR) def find_multiple(n: int, *args: Tuple[int]) -> int: k = reduce(lambda x, y: x * y // gcd(x, y), args + (1,)) if n % k == 0: return n return n + k - (n % k) @dataclass class ModelArgs: block_size: int = 2048 vocab_size: int = 32000 n_layer: int = 32 n_head: int = 32 dim: int = 4096 speaker_emb_dim: int = 256 intermediate_size: int = None n_local_heads: int = -1 head_dim: int = 64 norm_eps: float = 1e-5 dtype: torch.dtype = torch.bfloat16 def __post_init__(self): if self.n_local_heads == -1: self.n_local_heads = self.n_head if self.intermediate_size is None: hidden_dim = 4 * self.dim n_hidden = int(2 * hidden_dim / 3) self.intermediate_size = find_multiple(n_hidden, 256) self.head_dim = self.dim // self.n_head self.dtype = {"float16": torch.float16, "bfloat16": torch.bfloat16}[get_default_dtype()] @classmethod def from_name(cls, name: str): if name in transformer_configs: return cls(**transformer_configs[name]) # fuzzy search config = [config for config in transformer_configs if config in str(name).upper() or config in str(name)] assert len(config) == 1, name return cls(**transformer_configs[config[0]]) transformer_configs = { "kotoba-speech-v0.1": dict( n_layer=24, n_head=16, dim=2048, vocab_size=2562, ), } class KVCache(nn.Module): def __init__(self, max_batch_size, max_seq_length, n_heads, head_dim, dtype): super().__init__() cache_shape = (max_batch_size, n_heads, max_seq_length, head_dim) self.register_buffer("k_cache", torch.zeros(cache_shape, dtype=dtype)) self.register_buffer("v_cache", torch.zeros(cache_shape, dtype=dtype)) def update(self, input_pos, k_val, v_val): # input_pos: [S], k_val: [B, H, S, D] assert input_pos.shape[0] == k_val.shape[2] k_out = self.k_cache v_out = self.v_cache k_out[:, :, input_pos] = k_val v_out[:, :, input_pos] = v_val return k_out, v_out class Transformer(nn.Module): def __init__(self, config: ModelArgs) -> None: super().__init__() self.config = config self.tok_embeddings = nn.Embedding(config.vocab_size, config.dim) self.pos_embeddings = nn.Embedding(config.block_size, config.dim) self.speaker_cond_pos = nn.Linear(config.speaker_emb_dim, config.dim, bias=False) self.layers = nn.ModuleList(TransformerBlock(config) for _ in range(config.n_layer)) self.norm = RMSNorm(config.dim, eps=config.norm_eps) self.output = nn.Linear(config.dim, config.vocab_size, bias=False) self.mask_cache: Optional[Tensor] = None self.max_batch_size = -1 self.max_seq_length = -1 def setup_spk_cond_mask(self): self.spk_cond_mask = torch.zeros((2, 1, self.config.dim), dtype=torch.bool) self.spk_cond_mask[0] = 1 def setup_caches(self, max_batch_size, max_seq_length): if self.max_seq_length >= max_seq_length and self.max_batch_size >= max_batch_size: return head_dim = self.config.dim // self.config.n_head max_seq_length = find_multiple(max_seq_length, 8) self.max_seq_length = max_seq_length self.max_batch_size = max_batch_size for b in self.layers: b.attention.kv_cache = KVCache( max_batch_size, max_seq_length, self.config.n_local_heads, head_dim, dtype=self.config.dtype ) self.causal_mask = torch.tril(torch.ones(self.max_seq_length, self.max_seq_length, dtype=torch.bool)) def forward(self, idx: Tensor, spk_emb: Tensor, input_pos: Tensor) -> Tensor: mask = self.causal_mask[None, None, input_pos] x = ( self.tok_embeddings(idx) + self.pos_embeddings(input_pos) # masking for speaker condition free guidance + self.speaker_cond_pos(spk_emb) * self.spk_cond_mask ) for i, layer in enumerate(self.layers): x = layer(x, input_pos, mask) x = self.norm(x) logits = self.output(x) return logits @classmethod def from_name(cls, name: str): return cls(ModelArgs.from_name(name)) class TransformerBlock(nn.Module): def __init__(self, config: ModelArgs) -> None: super().__init__() self.attention = Attention(config) self.feed_forward = FeedForward(config) self.ffn_norm = RMSNorm(config.dim, config.norm_eps) self.attention_norm = RMSNorm(config.dim, config.norm_eps) def forward(self, x: Tensor, input_pos: Tensor, mask: Tensor) -> Tensor: h = x + self.attention(self.attention_norm(x), mask, input_pos) out = h + self.feed_forward(self.ffn_norm(h)) return out class Attention(nn.Module): def __init__(self, config: ModelArgs): super().__init__() assert config.dim % config.n_head == 0 total_head_dim = (config.n_head + 2 * config.n_local_heads) * config.head_dim # key, query, value projections for all heads, but in a batch self.wqkv = nn.Linear(config.dim, total_head_dim, bias=False) self.wo = nn.Linear(config.dim, config.dim, bias=False) self.kv_cache = None self.n_head = config.n_head self.head_dim = config.head_dim self.n_local_heads = config.n_local_heads self.dim = config.dim def forward( self, x: Tensor, mask: Tensor, input_pos: Optional[Tensor] = None, ) -> Tensor: bsz, seqlen, _ = x.shape kv_size = self.n_local_heads * self.head_dim q, k, v = self.wqkv(x).split([self.dim, kv_size, kv_size], dim=-1) q = q.view(bsz, seqlen, self.n_head, self.head_dim) k = k.view(bsz, seqlen, self.n_local_heads, self.head_dim) v = v.view(bsz, seqlen, self.n_local_heads, self.head_dim) q, k, v = map(lambda x: x.transpose(1, 2), (q, k, v)) if self.kv_cache is not None: k, v = self.kv_cache.update(input_pos, k, v) k = k.repeat_interleave(self.n_head // self.n_local_heads, dim=1) v = v.repeat_interleave(self.n_head // self.n_local_heads, dim=1) y = F.scaled_dot_product_attention(q, k, v, attn_mask=mask, dropout_p=0.0) y = y.transpose(1, 2).contiguous().view(bsz, seqlen, self.dim) y = self.wo(y) return y class SwiGLU(nn.Module): def __init__(self, config: ModelArgs) -> None: super().__init__() self.w1 = nn.Linear(config.dim, config.intermediate_size, bias=False) self.w3 = nn.Linear(config.dim, config.intermediate_size, bias=False) def forward(self, x: Tensor) -> Tensor: return F.silu(self.w1(x)) * self.w3(x) class FeedForward(nn.Module): def __init__(self, config: ModelArgs) -> None: super().__init__() self.swiglu = SwiGLU(config) self.w2 = nn.Linear(config.intermediate_size, config.dim, bias=False) def forward(self, x: Tensor) -> Tensor: return self.w2(self.swiglu(x)) class RMSNorm(nn.Module): def __init__(self, dim: int, eps: float = 1e-5): super().__init__() self.eps = eps self.weight = nn.Parameter(torch.ones(dim)) def _norm(self, x): return x * torch.rsqrt(torch.mean(x * x, dim=-1, keepdim=True) + self.eps) def forward(self, x: Tensor) -> Tensor: output = self._norm(x.float()).type_as(x) return output * self.weight