|
import streamlit as st |
|
from sklearn import neighbors, datasets |
|
|
|
with st.form(key='my_form'): |
|
sLen = st.slider('sepal length (cm) ', 0.0, 10.0) |
|
sWid = st.slider('sepal Width (cm) ', 0.0, 10.0) |
|
pLen = st.slider('petal length (cm) ', 0.0, 10.0) |
|
pWid = st.slider('petal Width (cm) ', 0.0, 10.0) |
|
st.form_submit_button('predict') |
|
|
|
iris = datasets. load_iris() |
|
X, y = iris.data, iris.target |
|
knn = neighbors.KNeighborsClassifier(n_neighbors=3) |
|
knn.fit(X, y) |
|
predict = knn.predict([[sLen,sWid,pLen,pWid]]) |
|
st.text(iris.target_names[predict]) |