from __future__ import print_function # Unlike the rest of the PyTorch this file must be python2 compliant. # This script outputs relevant system environment info # Run it with `python collect_env.py`. import datetime import locale import re import subprocess import sys import os from collections import namedtuple try: import torch TORCH_AVAILABLE = True except (ImportError, NameError, AttributeError, OSError): TORCH_AVAILABLE = False # System Environment Information SystemEnv = namedtuple( "SystemEnv", [ "torch_version", "is_debug_build", "cuda_compiled_version", "gcc_version", "clang_version", "cmake_version", "os", "libc_version", "python_version", "python_platform", "is_cuda_available", "cuda_runtime_version", "nvidia_driver_version", "nvidia_gpu_models", "cudnn_version", "pip_version", # 'pip' or 'pip3' "pip_packages", "conda_packages", "hip_compiled_version", "hip_runtime_version", "miopen_runtime_version", "caching_allocator_config", "is_xnnpack_available", ], ) def run(command): """Returns (return-code, stdout, stderr)""" p = subprocess.Popen( command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True ) raw_output, raw_err = p.communicate() rc = p.returncode if get_platform() == "win32": enc = "oem" else: enc = locale.getpreferredencoding() output = raw_output.decode(enc) err = raw_err.decode(enc) return rc, output.strip(), err.strip() def run_and_read_all(run_lambda, command): """Runs command using run_lambda; reads and returns entire output if rc is 0""" rc, out, _ = run_lambda(command) if rc != 0: return None return out def run_and_parse_first_match(run_lambda, command, regex): """Runs command using run_lambda, returns the first regex match if it exists""" rc, out, _ = run_lambda(command) if rc != 0: return None match = re.search(regex, out) if match is None: return None return match.group(1) def run_and_return_first_line(run_lambda, command): """Runs command using run_lambda and returns first line if output is not empty""" rc, out, _ = run_lambda(command) if rc != 0: return None return out.split("\n")[0] def get_conda_packages(run_lambda): conda = os.environ.get("CONDA_EXE", "conda") out = run_and_read_all(run_lambda, "{} list".format(conda)) if out is None: return out return "\n".join( line for line in out.splitlines() if not line.startswith("#") and any( name in line for name in { "torch", "numpy", "cudatoolkit", "soumith", "mkl", "magma", "mkl", } ) ) def get_gcc_version(run_lambda): return run_and_parse_first_match(run_lambda, "gcc --version", r"gcc (.*)") def get_clang_version(run_lambda): return run_and_parse_first_match( run_lambda, "clang --version", r"clang version (.*)" ) def get_cmake_version(run_lambda): return run_and_parse_first_match(run_lambda, "cmake --version", r"cmake (.*)") def get_nvidia_driver_version(run_lambda): if get_platform() == "darwin": cmd = "kextstat | grep -i cuda" return run_and_parse_first_match( run_lambda, cmd, r"com[.]nvidia[.]CUDA [(](.*?)[)]" ) smi = get_nvidia_smi() return run_and_parse_first_match(run_lambda, smi, r"Driver Version: (.*?) ") def get_gpu_info(run_lambda): if get_platform() == "darwin" or ( TORCH_AVAILABLE and hasattr(torch.version, "hip") and torch.version.hip is not None ): if TORCH_AVAILABLE and torch.cuda.is_available(): return torch.cuda.get_device_name(None) return None smi = get_nvidia_smi() uuid_regex = re.compile(r" \(UUID: .+?\)") rc, out, _ = run_lambda(smi + " -L") if rc != 0: return None # Anonymize GPUs by removing their UUID return re.sub(uuid_regex, "", out) def get_running_cuda_version(run_lambda): return run_and_parse_first_match(run_lambda, "nvcc --version", r"release .+ V(.*)") def get_cudnn_version(run_lambda): """This will return a list of libcudnn.so; it's hard to tell which one is being used""" if get_platform() == "win32": system_root = os.environ.get("SYSTEMROOT", "C:\\Windows") cuda_path = os.environ.get("CUDA_PATH", "%CUDA_PATH%") where_cmd = os.path.join(system_root, "System32", "where") cudnn_cmd = '{} /R "{}\\bin" cudnn*.dll'.format(where_cmd, cuda_path) elif get_platform() == "darwin": # CUDA libraries and drivers can be found in /usr/local/cuda/. See # https://docs.nvidia.com/cuda/cuda-installation-guide-mac-os-x/index.html#install # https://docs.nvidia.com/deeplearning/sdk/cudnn-install/index.html#installmac # Use CUDNN_LIBRARY when cudnn library is installed elsewhere. cudnn_cmd = "ls /usr/local/cuda/lib/libcudnn*" else: cudnn_cmd = 'ldconfig -p | grep libcudnn | rev | cut -d" " -f1 | rev' rc, out, _ = run_lambda(cudnn_cmd) # find will return 1 if there are permission errors or if not found if len(out) == 0 or (rc != 1 and rc != 0): l = os.environ.get("CUDNN_LIBRARY") if l is not None and os.path.isfile(l): return os.path.realpath(l) return None files_set = set() for fn in out.split("\n"): fn = os.path.realpath(fn) # eliminate symbolic links if os.path.isfile(fn): files_set.add(fn) if not files_set: return None # Alphabetize the result because the order is non-deterministic otherwise files = list(sorted(files_set)) if len(files) == 1: return files[0] result = "\n".join(files) return "Probably one of the following:\n{}".format(result) def get_nvidia_smi(): # Note: nvidia-smi is currently available only on Windows and Linux smi = "nvidia-smi" if get_platform() == "win32": system_root = os.environ.get("SYSTEMROOT", "C:\\Windows") program_files_root = os.environ.get("PROGRAMFILES", "C:\\Program Files") legacy_path = os.path.join( program_files_root, "NVIDIA Corporation", "NVSMI", smi ) new_path = os.path.join(system_root, "System32", smi) smis = [new_path, legacy_path] for candidate_smi in smis: if os.path.exists(candidate_smi): smi = '"{}"'.format(candidate_smi) break return smi def get_platform(): if sys.platform.startswith("linux"): return "linux" elif sys.platform.startswith("win32"): return "win32" elif sys.platform.startswith("cygwin"): return "cygwin" elif sys.platform.startswith("darwin"): return "darwin" else: return sys.platform def get_mac_version(run_lambda): return run_and_parse_first_match(run_lambda, "sw_vers -productVersion", r"(.*)") def get_windows_version(run_lambda): system_root = os.environ.get("SYSTEMROOT", "C:\\Windows") wmic_cmd = os.path.join(system_root, "System32", "Wbem", "wmic") findstr_cmd = os.path.join(system_root, "System32", "findstr") return run_and_read_all( run_lambda, "{} os get Caption | {} /v Caption".format(wmic_cmd, findstr_cmd) ) def get_lsb_version(run_lambda): return run_and_parse_first_match( run_lambda, "lsb_release -a", r"Description:\t(.*)" ) def check_release_file(run_lambda): return run_and_parse_first_match( run_lambda, "cat /etc/*-release", r'PRETTY_NAME="(.*)"' ) def get_os(run_lambda): from platform import machine platform = get_platform() if platform == "win32" or platform == "cygwin": return get_windows_version(run_lambda) if platform == "darwin": version = get_mac_version(run_lambda) if version is None: return None return "macOS {} ({})".format(version, machine()) if platform == "linux": # Ubuntu/Debian based desc = get_lsb_version(run_lambda) if desc is not None: return "{} ({})".format(desc, machine()) # Try reading /etc/*-release desc = check_release_file(run_lambda) if desc is not None: return "{} ({})".format(desc, machine()) return "{} ({})".format(platform, machine()) # Unknown platform return platform def get_python_platform(): import platform return platform.platform() def get_libc_version(): import platform if get_platform() != "linux": return "N/A" return "-".join(platform.libc_ver()) def get_pip_packages(run_lambda): """Returns `pip list` output. Note: will also find conda-installed pytorch and numpy packages.""" # People generally have `pip` as `pip` or `pip3` # But here it is incoved as `python -mpip` def run_with_pip(pip): out = run_and_read_all(run_lambda, "{} list --format=freeze".format(pip)) return "\n".join( line for line in out.splitlines() if any( name in line for name in { "torch", "numpy", "mypy", } ) ) pip_version = "pip3" if sys.version[0] == "3" else "pip" out = run_with_pip(sys.executable + " -mpip") return pip_version, out def get_cachingallocator_config(): ca_config = os.environ.get("PYTORCH_CUDA_ALLOC_CONF", "") return ca_config def is_xnnpack_available(): if TORCH_AVAILABLE: import torch.backends.xnnpack return str(torch.backends.xnnpack.enabled) # type: ignore[attr-defined] else: return "N/A" def get_env_info(): run_lambda = run pip_version, pip_list_output = get_pip_packages(run_lambda) if TORCH_AVAILABLE: version_str = torch.__version__ debug_mode_str = str(torch.version.debug) cuda_available_str = str(torch.cuda.is_available()) cuda_version_str = torch.version.cuda if ( not hasattr(torch.version, "hip") or torch.version.hip is None ): # cuda version hip_compiled_version = hip_runtime_version = miopen_runtime_version = "N/A" else: # HIP version cfg = torch._C._show_config().split("\n") hip_runtime_version = [ s.rsplit(None, 1)[-1] for s in cfg if "HIP Runtime" in s ][0] miopen_runtime_version = [ s.rsplit(None, 1)[-1] for s in cfg if "MIOpen" in s ][0] cuda_version_str = "N/A" hip_compiled_version = torch.version.hip else: version_str = debug_mode_str = cuda_available_str = cuda_version_str = "N/A" hip_compiled_version = hip_runtime_version = miopen_runtime_version = "N/A" sys_version = sys.version.replace("\n", " ") return SystemEnv( torch_version=version_str, is_debug_build=debug_mode_str, python_version="{} ({}-bit runtime)".format( sys_version, sys.maxsize.bit_length() + 1 ), python_platform=get_python_platform(), is_cuda_available=cuda_available_str, cuda_compiled_version=cuda_version_str, cuda_runtime_version=get_running_cuda_version(run_lambda), nvidia_gpu_models=get_gpu_info(run_lambda), nvidia_driver_version=get_nvidia_driver_version(run_lambda), cudnn_version=get_cudnn_version(run_lambda), hip_compiled_version=hip_compiled_version, hip_runtime_version=hip_runtime_version, miopen_runtime_version=miopen_runtime_version, pip_version=pip_version, pip_packages=pip_list_output, conda_packages=get_conda_packages(run_lambda), os=get_os(run_lambda), libc_version=get_libc_version(), gcc_version=get_gcc_version(run_lambda), clang_version=get_clang_version(run_lambda), cmake_version=get_cmake_version(run_lambda), caching_allocator_config=get_cachingallocator_config(), is_xnnpack_available=is_xnnpack_available(), ) env_info_fmt = """ PyTorch version: {torch_version} Is debug build: {is_debug_build} CUDA used to build PyTorch: {cuda_compiled_version} ROCM used to build PyTorch: {hip_compiled_version} OS: {os} GCC version: {gcc_version} Clang version: {clang_version} CMake version: {cmake_version} Libc version: {libc_version} Python version: {python_version} Python platform: {python_platform} Is CUDA available: {is_cuda_available} CUDA runtime version: {cuda_runtime_version} GPU models and configuration: {nvidia_gpu_models} Nvidia driver version: {nvidia_driver_version} cuDNN version: {cudnn_version} HIP runtime version: {hip_runtime_version} MIOpen runtime version: {miopen_runtime_version} Is XNNPACK available: {is_xnnpack_available} Versions of relevant libraries: {pip_packages} {conda_packages} """.strip() def pretty_str(envinfo): def replace_nones(dct, replacement="Could not collect"): for key in dct.keys(): if dct[key] is not None: continue dct[key] = replacement return dct def replace_bools(dct, true="Yes", false="No"): for key in dct.keys(): if dct[key] is True: dct[key] = true elif dct[key] is False: dct[key] = false return dct def prepend(text, tag="[prepend]"): lines = text.split("\n") updated_lines = [tag + line for line in lines] return "\n".join(updated_lines) def replace_if_empty(text, replacement="No relevant packages"): if text is not None and len(text) == 0: return replacement return text def maybe_start_on_next_line(string): # If `string` is multiline, prepend a \n to it. if string is not None and len(string.split("\n")) > 1: return "\n{}\n".format(string) return string mutable_dict = envinfo._asdict() # If nvidia_gpu_models is multiline, start on the next line mutable_dict["nvidia_gpu_models"] = maybe_start_on_next_line( envinfo.nvidia_gpu_models ) # If the machine doesn't have CUDA, report some fields as 'No CUDA' dynamic_cuda_fields = [ "cuda_runtime_version", "nvidia_gpu_models", "nvidia_driver_version", ] all_cuda_fields = dynamic_cuda_fields + ["cudnn_version"] all_dynamic_cuda_fields_missing = all( mutable_dict[field] is None for field in dynamic_cuda_fields ) if ( TORCH_AVAILABLE and not torch.cuda.is_available() and all_dynamic_cuda_fields_missing ): for field in all_cuda_fields: mutable_dict[field] = "No CUDA" if envinfo.cuda_compiled_version is None: mutable_dict["cuda_compiled_version"] = "None" # Replace True with Yes, False with No mutable_dict = replace_bools(mutable_dict) # Replace all None objects with 'Could not collect' mutable_dict = replace_nones(mutable_dict) # If either of these are '', replace with 'No relevant packages' mutable_dict["pip_packages"] = replace_if_empty(mutable_dict["pip_packages"]) mutable_dict["conda_packages"] = replace_if_empty(mutable_dict["conda_packages"]) # Tag conda and pip packages with a prefix # If they were previously None, they'll show up as ie '[conda] Could not collect' if mutable_dict["pip_packages"]: mutable_dict["pip_packages"] = prepend( mutable_dict["pip_packages"], "[{}] ".format(envinfo.pip_version) ) if mutable_dict["conda_packages"]: mutable_dict["conda_packages"] = prepend( mutable_dict["conda_packages"], "[conda] " ) return env_info_fmt.format(**mutable_dict) def get_pretty_env_info(): return pretty_str(get_env_info()) def main(): print("Collecting environment information...") output = get_pretty_env_info() print(output) if ( TORCH_AVAILABLE and hasattr(torch, "utils") and hasattr(torch.utils, "_crash_handler") ): minidump_dir = torch.utils._crash_handler.DEFAULT_MINIDUMP_DIR if sys.platform == "linux" and os.path.exists(minidump_dir): dumps = [ os.path.join(minidump_dir, dump) for dump in os.listdir(minidump_dir) ] latest = max(dumps, key=os.path.getctime) ctime = os.path.getctime(latest) creation_time = datetime.datetime.fromtimestamp(ctime).strftime( "%Y-%m-%d %H:%M:%S" ) msg = ( "\n*** Detected a minidump at {} created on {}, ".format( latest, creation_time ) + "if this is related to your bug please include it when you file a report ***" ) print(msg, file=sys.stderr) if __name__ == "__main__": main()