import streamlit as st import kornia import torch from torch import nn from torchvision.transforms import functional as F from torchvision.utils import make_grid from streamlit_ace import st_ace from PIL import Image import numpy as np IS_LOCAL = False # Change this @st.cache_data def set_transform(content): try: transform = eval(content, {"kornia": kornia, "nn": nn}, None) except Exception as e: st.write(f"There was an error: {e}") transform = nn.Sequential() return transform st.set_page_config(page_title="Kornia Augmentations Demo", layout="wide") st.markdown("# Kornia Augmentations Demo") st.sidebar.markdown( "[Kornia](https://github.com/kornia/kornia) is a *differentiable* computer vision library for PyTorch." ) uploaded_file = st.sidebar.file_uploader("Choose a file", type=['png', 'jpg', 'jpeg']) if uploaded_file is not None: im = Image.open(uploaded_file) else: im = Image.open("./images/pretty_bird.jpg") scaler = int(im.height / 2) st.sidebar.image(im, caption="Input Image", width=256) # Convert PIL Image to torch tensor image = torch.from_numpy(np.array(im).transpose((2, 0, 1))).float() / 255.0 # batch size is just for show batch_size = st.sidebar.slider("batch_size", min_value=4, max_value=16, value=8) gpu = st.sidebar.checkbox("Use GPU!", value=False) if not gpu: st.sidebar.markdown("Using CPU for operations.") device = torch.device("cpu") else: if not IS_LOCAL or not torch.cuda.is_available(): st.sidebar.markdown("GPU not available, using CPU.") device = torch.device("cpu") else: st.sidebar.markdown("Running on GPU~") device = torch.device("cuda:0") predefined_transforms = [ """ nn.Sequential( kornia.augmentation.RandomAffine(degrees=360,p=0.5), kornia.augmentation.ColorJitter(brightness=0.2, contrast=0.3, saturation=0.2, hue=0.3, p=1) ) # p=0.5 is the probability of applying the transformation """, """ nn.Sequential( kornia.augmentation.RandomErasing(scale=(.4, .8), ratio=(.3, 1/.3), p=0.5), ) """, """ nn.Sequential( kornia.augmentation.RandomErasing(scale=(.4, .8), ratio=(.3, 1/.3), p=1, same_on_batch=True), ) #By setting same_on_batch=True you can apply the same transform across the batch """, f""" nn.Sequential( kornia.augmentation.RandomResizedCrop(size=({scaler}, {scaler}), scale=(3., 3.), ratio=(2., 2.), p=1.), kornia.augmentation.RandomHorizontalFlip(p=0.7), kornia.augmentation.RandomGrayscale(p=0.5), ) """ ] selected_transform = st.selectbox( "Pick an augmentation pipeline example:", predefined_transforms ) st.write("Transform to apply:") readonly = False content = st_ace( value=selected_transform, height=150, language="python", keybinding="vscode", show_gutter=True, show_print_margin=True, wrap=False, auto_update=False, readonly=readonly, ) if content: transform = set_transform(content) process = st.button("Next Batch") # Fake dataloader image_batch = torch.stack(batch_size * [image]) image_batch = image_batch.to(device) transformeds = None try: transformeds = transform(image_batch) except Exception as e: st.write(f"There was an error: {e}") cols = st.columns(4) if transformeds is not None: for i, x in enumerate(transformeds): i = i % 4 img_np = x.cpu().numpy().transpose((1, 2, 0)) img_np = (img_np * 255).astype(np.uint8) cols[i].image(img_np, use_column_width=True) st.markdown( "There are a lot more transformations available: [Documentation](https://kornia.readthedocs.io/en/latest/augmentation.module.html)" ) st.markdown( "Kornia can do a lot more than augmentations~ [Check it out](https://kornia.readthedocs.io/en/latest/get-started/introduction.html)" )