import torch from peft import PeftModel from transformers import AutoTokenizer, AutoModelForCausalLM from optimum.bettertransformer import BetterTransformer def load_model( base, finetuned, mode_cpu, mode_mps, mode_full_gpu, mode_8bit, mode_4bit, force_download_ckpt, local_files_only ): tokenizer = AutoTokenizer.from_pretrained( base, local_files_only=local_files_only ) tokenizer.padding_side = "left" if mode_cpu: print("cpu mode") model = AutoModelForCausalLM.from_pretrained( base, device_map={"": "cpu"}, torch_dtype=torch.bfloat16, use_safetensors=False, trust_remote_code=True, local_files_only=local_files_only ) elif mode_mps: print("mps mode") model = AutoModelForCausalLM.from_pretrained( base, device_map={"": "mps"}, torch_dtype=torch.bfloat16, use_safetensors=False, trust_remote_code=True, local_files_only=local_files_only ) else: print("gpu mode") print(f"8bit = {mode_8bit}, 4bit = {mode_4bit}") model = AutoModelForCausalLM.from_pretrained( base, load_in_8bit=mode_8bit, load_in_4bit=mode_4bit, torch_dtype=torch.bfloat16, device_map="auto", trust_remote_code=True, use_safetensors=False, local_files_only=local_files_only ) # if not mode_8bit and not mode_4bit: # model.half() # model = BetterTransformer.transform(model) return model, tokenizer