import streamlit as st import random import os import clip from funcs.get_similarity import get_similarity_score, create_filelist, load_embeddings, find_matches from funcs.fiass_similaruty import load_embeddings, encode_text, find_matches_fiass import torch.nn.functional as F import pandas as pd from unzip import unzip zip_filename = 'img.zip' target_dir = 'photos' # Create the target directory if it doesn't exist if not os.path.exists(target_dir): os.makedirs(target_dir) # Open the zip file and extract its contents to the target directory with zipfile.ZipFile(zip_filename, 'r') as zip_ref: zip_ref.extractall(target_dir) device = 'cpu' model_path = "weights/ViT-B-32.pt" model, preprocess = clip.load('ViT-B/32', device) file_name = create_filelist('img') features = load_embeddings('embeddings/emb_images_5000.npy') df = pd.read_csv('data/results.csv') random_queries = ['friends playing cards', 'rock band playing on guitars', 'policeman cross the road', 'sleeping kids', 'football team playing on the grass' , 'learning programming' ] st.header('Find my pic!') request = st.text_input('Write a description of the picture', ' Two people at the photo') if request: unzip('img.zip') img_count = st.slider('How much pic you need?', 4, 8, 6, 2) matches = find_matches_fiass(features, request, file_name, img_count) row1, row2 = st.columns(2) if st.button('Find!'): selected_filenames = matches for i in range(int(img_count/2)): filename = selected_filenames[i] img_path = filename img_discription = df[df['image_name'] == filename.split('/')[1]]['comment'].iloc[0] with row1: st.image(img_path, width=300, caption=img_discription) # display next 3 images in the second row for i in range(int(img_count/2), img_count): filename = selected_filenames[i] img_path = filename img_discription = df[df['image_name'] == filename.split('/')[1]]['comment'].iloc[0] with row2: st.image(img_path, width=300, caption=img_discription)