from turtle import title import gradio as gr from huggingface_hub import from_pretrained_keras import tensorflow as tf import numpy as np from PIL import Image import io import base64 model = tf.keras.models.load_model("./tf_model.h5") def predict(image): img = np.array(image) original_shape = img.shape[:2] im = tf.image.resize(img, (128, 128)) im = tf.cast(im, tf.float32) / 255.0 pred_mask = model.predict(im[tf.newaxis, ...]) # take the best performing class for each pixel # the output of argmax looks like this [[1, 2, 0], ...] pred_mask_arg = tf.argmax(pred_mask, axis=-1) # convert the prediction mask into binary masks for each class binary_masks = {} # when we take tf.argmax() over pred_mask, it becomes a tensor object # the shape becomes TensorShape object, looking like this TensorShape([128]) # we need to take get shape, convert to list and take the best one rows = pred_mask_arg[0][1].get_shape().as_list()[0] cols = pred_mask_arg[0][2].get_shape().as_list()[0] for cls in range(pred_mask.shape[-1]): binary_masks[f"mask_{cls}"] = np.zeros(shape = (pred_mask.shape[1], pred_mask.shape[2])) #create masks for each class for row in range(rows): for col in range(cols): if pred_mask_arg[0][row][col] == cls: binary_masks[f"mask_{cls}"][row][col] = 1 else: binary_masks[f"mask_{cls}"][row][col] = 0 mask = binary_masks[f"mask_{cls}"] mask *= 255 mask = np.array(Image.fromarray(mask).convert("L")) mask = tf.image.resize(mask[..., tf.newaxis], original_shape) mask = tf.cast(mask, tf.uint8) mask = mask.numpy().squeeze() return mask title = '